Effects of Embedded Dipole Layers on Electrostatic Properties of Alkanethiolate Self-Assembled Monolayers

Alkanethiolates (ATs) forming self-assembled monolayers (SAMs) on coinage metal and semiconductor substrates have been used successfully for decades for tailoring the properties of these surfaces. Here, we provide a detailed analysis of a highly promising class of AT-based systems, which are modifie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2017-07, Vol.121 (29), p.15815-15830
Hauptverfasser: Cabarcos, Orlando M, Schuster, Swen, Hehn, Iris, Zhang, Peng Peng, Maitani, Masato M, Sullivan, Nichole, Giguère, Jean-Benoit, Morin, Jean-François, Weiss, Paul S, Zojer, Egbert, Zharnikov, Michael, Allara, David L
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15830
container_issue 29
container_start_page 15815
container_title Journal of physical chemistry. C
container_volume 121
creator Cabarcos, Orlando M
Schuster, Swen
Hehn, Iris
Zhang, Peng Peng
Maitani, Masato M
Sullivan, Nichole
Giguère, Jean-Benoit
Morin, Jean-François
Weiss, Paul S
Zojer, Egbert
Zharnikov, Michael
Allara, David L
description Alkanethiolates (ATs) forming self-assembled monolayers (SAMs) on coinage metal and semiconductor substrates have been used successfully for decades for tailoring the properties of these surfaces. Here, we provide a detailed analysis of a highly promising class of AT-based systems, which are modified by one or more dipolar carboxylic acid ester groups embedded into the alkyl backbone. To obtain comprehensive insight, we study nine different embedded-dipole monolayers and five reference nonsubstituted SAMs. We systematically varied lengths of the alkyl segments, ester group orientations, and number of ester groups contained in the chain. To understand the structural and electronic properties of the SAMs, we employ a variety of complementary experimental techniques, namely, infrared reflection absorption spectroscopy (IRS), high-resolution X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), atomic force microscopy (AFM), and Kelvin probe (KP) AFM. These experiments are complemented with state-of-the-art electronic band-structure calculations. We find intriguing electronic properties such as large and variable SAM-induced work function modifications and dipole-induced shifts of the electrostatic potential within the layers. These observations are analyzed in detail by joining the results of the different experimental techniques with the atomistic insight provided by the quantum-mechanical simulations.
doi_str_mv 10.1021/acs.jpcc.7b04694
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcc_7b04694</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c110095099</sourcerecordid><originalsourceid>FETCH-LOGICAL-a346t-a66c4364f4d6d1de5be71c85d3454c67f4109cc6b15c67156e27c87ba0e16a703</originalsourceid><addsrcrecordid>eNp1UMtKAzEUDaJgre5d5gOcmjSvdlnqWIWKgroeMskNTk0nQxIX_XvTB-5c3cd5cDgI3VIyoWRK77VJk81gzES1hMs5P0MjOmfTSnEhzv92ri7RVUobQgQjlI1QVzsHJiccHK63LVgLFj90Q_CA13oHsSA9rn3hxJCyzp3BbzEMEHMHB9XCf-se8lcXvM6A38G7apESbFtfrF5CX_57n2t04bRPcHOaY_T5WH8sn6r16-p5uVhXmnGZKy2l4Uxyx6201IJoQVEzE5ZxwY1UjlMyN0a2VJSLCglTZWaq1QSo1IqwMSJHX1MCpwiuGWK31XHXUNLsq2pKVc2-quZUVZHcHSUHJPzEvgT8n_4LujVusg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effects of Embedded Dipole Layers on Electrostatic Properties of Alkanethiolate Self-Assembled Monolayers</title><source>ACS Publications</source><creator>Cabarcos, Orlando M ; Schuster, Swen ; Hehn, Iris ; Zhang, Peng Peng ; Maitani, Masato M ; Sullivan, Nichole ; Giguère, Jean-Benoit ; Morin, Jean-François ; Weiss, Paul S ; Zojer, Egbert ; Zharnikov, Michael ; Allara, David L</creator><creatorcontrib>Cabarcos, Orlando M ; Schuster, Swen ; Hehn, Iris ; Zhang, Peng Peng ; Maitani, Masato M ; Sullivan, Nichole ; Giguère, Jean-Benoit ; Morin, Jean-François ; Weiss, Paul S ; Zojer, Egbert ; Zharnikov, Michael ; Allara, David L</creatorcontrib><description>Alkanethiolates (ATs) forming self-assembled monolayers (SAMs) on coinage metal and semiconductor substrates have been used successfully for decades for tailoring the properties of these surfaces. Here, we provide a detailed analysis of a highly promising class of AT-based systems, which are modified by one or more dipolar carboxylic acid ester groups embedded into the alkyl backbone. To obtain comprehensive insight, we study nine different embedded-dipole monolayers and five reference nonsubstituted SAMs. We systematically varied lengths of the alkyl segments, ester group orientations, and number of ester groups contained in the chain. To understand the structural and electronic properties of the SAMs, we employ a variety of complementary experimental techniques, namely, infrared reflection absorption spectroscopy (IRS), high-resolution X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), atomic force microscopy (AFM), and Kelvin probe (KP) AFM. These experiments are complemented with state-of-the-art electronic band-structure calculations. We find intriguing electronic properties such as large and variable SAM-induced work function modifications and dipole-induced shifts of the electrostatic potential within the layers. These observations are analyzed in detail by joining the results of the different experimental techniques with the atomistic insight provided by the quantum-mechanical simulations.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.7b04694</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of physical chemistry. C, 2017-07, Vol.121 (29), p.15815-15830</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a346t-a66c4364f4d6d1de5be71c85d3454c67f4109cc6b15c67156e27c87ba0e16a703</citedby><cites>FETCH-LOGICAL-a346t-a66c4364f4d6d1de5be71c85d3454c67f4109cc6b15c67156e27c87ba0e16a703</cites><orcidid>0000-0002-5730-0149 ; 0000-0002-3708-7571 ; 0000-0002-9259-9051 ; 0000-0002-9541-4884 ; 0000-0001-5527-6248</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.7b04694$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.7b04694$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,2754,27063,27911,27912,56725,56775</link.rule.ids></links><search><creatorcontrib>Cabarcos, Orlando M</creatorcontrib><creatorcontrib>Schuster, Swen</creatorcontrib><creatorcontrib>Hehn, Iris</creatorcontrib><creatorcontrib>Zhang, Peng Peng</creatorcontrib><creatorcontrib>Maitani, Masato M</creatorcontrib><creatorcontrib>Sullivan, Nichole</creatorcontrib><creatorcontrib>Giguère, Jean-Benoit</creatorcontrib><creatorcontrib>Morin, Jean-François</creatorcontrib><creatorcontrib>Weiss, Paul S</creatorcontrib><creatorcontrib>Zojer, Egbert</creatorcontrib><creatorcontrib>Zharnikov, Michael</creatorcontrib><creatorcontrib>Allara, David L</creatorcontrib><title>Effects of Embedded Dipole Layers on Electrostatic Properties of Alkanethiolate Self-Assembled Monolayers</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Alkanethiolates (ATs) forming self-assembled monolayers (SAMs) on coinage metal and semiconductor substrates have been used successfully for decades for tailoring the properties of these surfaces. Here, we provide a detailed analysis of a highly promising class of AT-based systems, which are modified by one or more dipolar carboxylic acid ester groups embedded into the alkyl backbone. To obtain comprehensive insight, we study nine different embedded-dipole monolayers and five reference nonsubstituted SAMs. We systematically varied lengths of the alkyl segments, ester group orientations, and number of ester groups contained in the chain. To understand the structural and electronic properties of the SAMs, we employ a variety of complementary experimental techniques, namely, infrared reflection absorption spectroscopy (IRS), high-resolution X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), atomic force microscopy (AFM), and Kelvin probe (KP) AFM. These experiments are complemented with state-of-the-art electronic band-structure calculations. We find intriguing electronic properties such as large and variable SAM-induced work function modifications and dipole-induced shifts of the electrostatic potential within the layers. These observations are analyzed in detail by joining the results of the different experimental techniques with the atomistic insight provided by the quantum-mechanical simulations.</description><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1UMtKAzEUDaJgre5d5gOcmjSvdlnqWIWKgroeMskNTk0nQxIX_XvTB-5c3cd5cDgI3VIyoWRK77VJk81gzES1hMs5P0MjOmfTSnEhzv92ri7RVUobQgQjlI1QVzsHJiccHK63LVgLFj90Q_CA13oHsSA9rn3hxJCyzp3BbzEMEHMHB9XCf-se8lcXvM6A38G7apESbFtfrF5CX_57n2t04bRPcHOaY_T5WH8sn6r16-p5uVhXmnGZKy2l4Uxyx6201IJoQVEzE5ZxwY1UjlMyN0a2VJSLCglTZWaq1QSo1IqwMSJHX1MCpwiuGWK31XHXUNLsq2pKVc2-quZUVZHcHSUHJPzEvgT8n_4LujVusg</recordid><startdate>20170727</startdate><enddate>20170727</enddate><creator>Cabarcos, Orlando M</creator><creator>Schuster, Swen</creator><creator>Hehn, Iris</creator><creator>Zhang, Peng Peng</creator><creator>Maitani, Masato M</creator><creator>Sullivan, Nichole</creator><creator>Giguère, Jean-Benoit</creator><creator>Morin, Jean-François</creator><creator>Weiss, Paul S</creator><creator>Zojer, Egbert</creator><creator>Zharnikov, Michael</creator><creator>Allara, David L</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5730-0149</orcidid><orcidid>https://orcid.org/0000-0002-3708-7571</orcidid><orcidid>https://orcid.org/0000-0002-9259-9051</orcidid><orcidid>https://orcid.org/0000-0002-9541-4884</orcidid><orcidid>https://orcid.org/0000-0001-5527-6248</orcidid></search><sort><creationdate>20170727</creationdate><title>Effects of Embedded Dipole Layers on Electrostatic Properties of Alkanethiolate Self-Assembled Monolayers</title><author>Cabarcos, Orlando M ; Schuster, Swen ; Hehn, Iris ; Zhang, Peng Peng ; Maitani, Masato M ; Sullivan, Nichole ; Giguère, Jean-Benoit ; Morin, Jean-François ; Weiss, Paul S ; Zojer, Egbert ; Zharnikov, Michael ; Allara, David L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a346t-a66c4364f4d6d1de5be71c85d3454c67f4109cc6b15c67156e27c87ba0e16a703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cabarcos, Orlando M</creatorcontrib><creatorcontrib>Schuster, Swen</creatorcontrib><creatorcontrib>Hehn, Iris</creatorcontrib><creatorcontrib>Zhang, Peng Peng</creatorcontrib><creatorcontrib>Maitani, Masato M</creatorcontrib><creatorcontrib>Sullivan, Nichole</creatorcontrib><creatorcontrib>Giguère, Jean-Benoit</creatorcontrib><creatorcontrib>Morin, Jean-François</creatorcontrib><creatorcontrib>Weiss, Paul S</creatorcontrib><creatorcontrib>Zojer, Egbert</creatorcontrib><creatorcontrib>Zharnikov, Michael</creatorcontrib><creatorcontrib>Allara, David L</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cabarcos, Orlando M</au><au>Schuster, Swen</au><au>Hehn, Iris</au><au>Zhang, Peng Peng</au><au>Maitani, Masato M</au><au>Sullivan, Nichole</au><au>Giguère, Jean-Benoit</au><au>Morin, Jean-François</au><au>Weiss, Paul S</au><au>Zojer, Egbert</au><au>Zharnikov, Michael</au><au>Allara, David L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Embedded Dipole Layers on Electrostatic Properties of Alkanethiolate Self-Assembled Monolayers</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2017-07-27</date><risdate>2017</risdate><volume>121</volume><issue>29</issue><spage>15815</spage><epage>15830</epage><pages>15815-15830</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Alkanethiolates (ATs) forming self-assembled monolayers (SAMs) on coinage metal and semiconductor substrates have been used successfully for decades for tailoring the properties of these surfaces. Here, we provide a detailed analysis of a highly promising class of AT-based systems, which are modified by one or more dipolar carboxylic acid ester groups embedded into the alkyl backbone. To obtain comprehensive insight, we study nine different embedded-dipole monolayers and five reference nonsubstituted SAMs. We systematically varied lengths of the alkyl segments, ester group orientations, and number of ester groups contained in the chain. To understand the structural and electronic properties of the SAMs, we employ a variety of complementary experimental techniques, namely, infrared reflection absorption spectroscopy (IRS), high-resolution X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), atomic force microscopy (AFM), and Kelvin probe (KP) AFM. These experiments are complemented with state-of-the-art electronic band-structure calculations. We find intriguing electronic properties such as large and variable SAM-induced work function modifications and dipole-induced shifts of the electrostatic potential within the layers. These observations are analyzed in detail by joining the results of the different experimental techniques with the atomistic insight provided by the quantum-mechanical simulations.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.7b04694</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-5730-0149</orcidid><orcidid>https://orcid.org/0000-0002-3708-7571</orcidid><orcidid>https://orcid.org/0000-0002-9259-9051</orcidid><orcidid>https://orcid.org/0000-0002-9541-4884</orcidid><orcidid>https://orcid.org/0000-0001-5527-6248</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2017-07, Vol.121 (29), p.15815-15830
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_acs_jpcc_7b04694
source ACS Publications
title Effects of Embedded Dipole Layers on Electrostatic Properties of Alkanethiolate Self-Assembled Monolayers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T20%3A58%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Embedded%20Dipole%20Layers%20on%20Electrostatic%20Properties%20of%20Alkanethiolate%20Self-Assembled%20Monolayers&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Cabarcos,%20Orlando%20M&rft.date=2017-07-27&rft.volume=121&rft.issue=29&rft.spage=15815&rft.epage=15830&rft.pages=15815-15830&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.7b04694&rft_dat=%3Cacs_cross%3Ec110095099%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true