Elucidating the Cathodic Electrodeposition Mechanism of Lead/Lead Oxide Formation in Nitrate Solutions

The production of crystalline lead oxide (PbO) structures, directly on the surface of an electrode in (nitrate) solution, via electrochemical deposition of lead ions (Pb2+), is unequivocally demonstrated and the formation mechanism elucidated. Boron doped diamond electrodes are used as the depositio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2017-03, Vol.121 (12), p.6835-6843
Hauptverfasser: Meng, Lingcong, Ustarroz, Jon, Newton, Mark E, Macpherson, Julie V
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6843
container_issue 12
container_start_page 6835
container_title Journal of physical chemistry. C
container_volume 121
creator Meng, Lingcong
Ustarroz, Jon
Newton, Mark E
Macpherson, Julie V
description The production of crystalline lead oxide (PbO) structures, directly on the surface of an electrode in (nitrate) solution, via electrochemical deposition of lead ions (Pb2+), is unequivocally demonstrated and the formation mechanism elucidated. Boron doped diamond electrodes are used as the deposition platform. We show the effect of electrode potential, deposition time, presence of oxygen, and temperature on the formation process. At room temperature, under both deoxygenated and aerated conditions, high-resolution microscopy reveals a predominant nanoparticle (NP) morphology. In contrast, under laser-heated conditions, both NPs and half-hexagon shaped “plates” result. Transmission electron microscopy reveals these “plates” to be crystalline β-PbO. Plate prominence, under heated conditions, increases as the driving potential and deposition time is increased. By deoxygenating the solution and applying a deposition potential such that hydroxide ion (OH–) formation is negligible, only NPs are observed, which, from cyclic voltammetry data, are confirmed to be elemental Pb. We thus propose that Pb NPs and OH– play a crucial role in the PbO formation process. Electrodeposited Pb NPs catalyze OH– generation from either oxygen or nitrate reduction (oxygen reduction occurs at a less negative applied potential than nitrate reduction) driving the formation of lead hydroxide (Pb­(OH)2) via a precipitation route. The Pb­(OH)2 subsequently dehydrates to PbO, a process significantly accelerated by temperature. Hence, by controlling temperature, potential, and solution conditions, cathodic electrodeposition of Pb2+ can lead to the preferential formation of PbO crystalline structures on the electrode surface.
doi_str_mv 10.1021/acs.jpcc.7b00955
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcc_7b00955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d26434060</sourcerecordid><originalsourceid>FETCH-LOGICAL-a317t-c7846b05519d342ce7c35f4e1c6fce6fee28cea63ced222bdb4858b72978976c3</originalsourceid><addsrcrecordid>eNp1kE9PwzAMxSMEEmNw55gPQLf8aZr2iKYNkAY7AOcqdVyWqWumJJPg27NuEzcutmW_92T9CLnnbMKZ4FMDcbLZAUx0w1il1AUZ8UqKTOdKXf7Nub4mNzFuGFOScTki7bzbg7Mmuf6LpjXSmUlrbx3QeYeQgre489El53v6irA2vYtb6lu6RGOnQ6Grb2eRLnzYmqPM9fTNpWAS0nff7YddvCVXreki3p37mHwu5h-z52y5enqZPS4zI7lOGegyLxqmFK-szAWgBqnaHDkULWDRIooS0BQS0AohGtvkpSobLSpdVroAOSbslAvBxxiwrXfBbU34qTmrB071gVM9cKrPnA6Wh5PlePH70B8e_F_-C4sibhU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Elucidating the Cathodic Electrodeposition Mechanism of Lead/Lead Oxide Formation in Nitrate Solutions</title><source>American Chemical Society</source><creator>Meng, Lingcong ; Ustarroz, Jon ; Newton, Mark E ; Macpherson, Julie V</creator><creatorcontrib>Meng, Lingcong ; Ustarroz, Jon ; Newton, Mark E ; Macpherson, Julie V</creatorcontrib><description>The production of crystalline lead oxide (PbO) structures, directly on the surface of an electrode in (nitrate) solution, via electrochemical deposition of lead ions (Pb2+), is unequivocally demonstrated and the formation mechanism elucidated. Boron doped diamond electrodes are used as the deposition platform. We show the effect of electrode potential, deposition time, presence of oxygen, and temperature on the formation process. At room temperature, under both deoxygenated and aerated conditions, high-resolution microscopy reveals a predominant nanoparticle (NP) morphology. In contrast, under laser-heated conditions, both NPs and half-hexagon shaped “plates” result. Transmission electron microscopy reveals these “plates” to be crystalline β-PbO. Plate prominence, under heated conditions, increases as the driving potential and deposition time is increased. By deoxygenating the solution and applying a deposition potential such that hydroxide ion (OH–) formation is negligible, only NPs are observed, which, from cyclic voltammetry data, are confirmed to be elemental Pb. We thus propose that Pb NPs and OH– play a crucial role in the PbO formation process. Electrodeposited Pb NPs catalyze OH– generation from either oxygen or nitrate reduction (oxygen reduction occurs at a less negative applied potential than nitrate reduction) driving the formation of lead hydroxide (Pb­(OH)2) via a precipitation route. The Pb­(OH)2 subsequently dehydrates to PbO, a process significantly accelerated by temperature. Hence, by controlling temperature, potential, and solution conditions, cathodic electrodeposition of Pb2+ can lead to the preferential formation of PbO crystalline structures on the electrode surface.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.7b00955</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of physical chemistry. C, 2017-03, Vol.121 (12), p.6835-6843</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a317t-c7846b05519d342ce7c35f4e1c6fce6fee28cea63ced222bdb4858b72978976c3</citedby><cites>FETCH-LOGICAL-a317t-c7846b05519d342ce7c35f4e1c6fce6fee28cea63ced222bdb4858b72978976c3</cites><orcidid>0000-0002-4249-8383 ; 0000-0003-0166-6915</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.7b00955$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.7b00955$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Meng, Lingcong</creatorcontrib><creatorcontrib>Ustarroz, Jon</creatorcontrib><creatorcontrib>Newton, Mark E</creatorcontrib><creatorcontrib>Macpherson, Julie V</creatorcontrib><title>Elucidating the Cathodic Electrodeposition Mechanism of Lead/Lead Oxide Formation in Nitrate Solutions</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>The production of crystalline lead oxide (PbO) structures, directly on the surface of an electrode in (nitrate) solution, via electrochemical deposition of lead ions (Pb2+), is unequivocally demonstrated and the formation mechanism elucidated. Boron doped diamond electrodes are used as the deposition platform. We show the effect of electrode potential, deposition time, presence of oxygen, and temperature on the formation process. At room temperature, under both deoxygenated and aerated conditions, high-resolution microscopy reveals a predominant nanoparticle (NP) morphology. In contrast, under laser-heated conditions, both NPs and half-hexagon shaped “plates” result. Transmission electron microscopy reveals these “plates” to be crystalline β-PbO. Plate prominence, under heated conditions, increases as the driving potential and deposition time is increased. By deoxygenating the solution and applying a deposition potential such that hydroxide ion (OH–) formation is negligible, only NPs are observed, which, from cyclic voltammetry data, are confirmed to be elemental Pb. We thus propose that Pb NPs and OH– play a crucial role in the PbO formation process. Electrodeposited Pb NPs catalyze OH– generation from either oxygen or nitrate reduction (oxygen reduction occurs at a less negative applied potential than nitrate reduction) driving the formation of lead hydroxide (Pb­(OH)2) via a precipitation route. The Pb­(OH)2 subsequently dehydrates to PbO, a process significantly accelerated by temperature. Hence, by controlling temperature, potential, and solution conditions, cathodic electrodeposition of Pb2+ can lead to the preferential formation of PbO crystalline structures on the electrode surface.</description><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE9PwzAMxSMEEmNw55gPQLf8aZr2iKYNkAY7AOcqdVyWqWumJJPg27NuEzcutmW_92T9CLnnbMKZ4FMDcbLZAUx0w1il1AUZ8UqKTOdKXf7Nub4mNzFuGFOScTki7bzbg7Mmuf6LpjXSmUlrbx3QeYeQgre489El53v6irA2vYtb6lu6RGOnQ6Grb2eRLnzYmqPM9fTNpWAS0nff7YddvCVXreki3p37mHwu5h-z52y5enqZPS4zI7lOGegyLxqmFK-szAWgBqnaHDkULWDRIooS0BQS0AohGtvkpSobLSpdVroAOSbslAvBxxiwrXfBbU34qTmrB071gVM9cKrPnA6Wh5PlePH70B8e_F_-C4sibhU</recordid><startdate>20170330</startdate><enddate>20170330</enddate><creator>Meng, Lingcong</creator><creator>Ustarroz, Jon</creator><creator>Newton, Mark E</creator><creator>Macpherson, Julie V</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4249-8383</orcidid><orcidid>https://orcid.org/0000-0003-0166-6915</orcidid></search><sort><creationdate>20170330</creationdate><title>Elucidating the Cathodic Electrodeposition Mechanism of Lead/Lead Oxide Formation in Nitrate Solutions</title><author>Meng, Lingcong ; Ustarroz, Jon ; Newton, Mark E ; Macpherson, Julie V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a317t-c7846b05519d342ce7c35f4e1c6fce6fee28cea63ced222bdb4858b72978976c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meng, Lingcong</creatorcontrib><creatorcontrib>Ustarroz, Jon</creatorcontrib><creatorcontrib>Newton, Mark E</creatorcontrib><creatorcontrib>Macpherson, Julie V</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meng, Lingcong</au><au>Ustarroz, Jon</au><au>Newton, Mark E</au><au>Macpherson, Julie V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elucidating the Cathodic Electrodeposition Mechanism of Lead/Lead Oxide Formation in Nitrate Solutions</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2017-03-30</date><risdate>2017</risdate><volume>121</volume><issue>12</issue><spage>6835</spage><epage>6843</epage><pages>6835-6843</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>The production of crystalline lead oxide (PbO) structures, directly on the surface of an electrode in (nitrate) solution, via electrochemical deposition of lead ions (Pb2+), is unequivocally demonstrated and the formation mechanism elucidated. Boron doped diamond electrodes are used as the deposition platform. We show the effect of electrode potential, deposition time, presence of oxygen, and temperature on the formation process. At room temperature, under both deoxygenated and aerated conditions, high-resolution microscopy reveals a predominant nanoparticle (NP) morphology. In contrast, under laser-heated conditions, both NPs and half-hexagon shaped “plates” result. Transmission electron microscopy reveals these “plates” to be crystalline β-PbO. Plate prominence, under heated conditions, increases as the driving potential and deposition time is increased. By deoxygenating the solution and applying a deposition potential such that hydroxide ion (OH–) formation is negligible, only NPs are observed, which, from cyclic voltammetry data, are confirmed to be elemental Pb. We thus propose that Pb NPs and OH– play a crucial role in the PbO formation process. Electrodeposited Pb NPs catalyze OH– generation from either oxygen or nitrate reduction (oxygen reduction occurs at a less negative applied potential than nitrate reduction) driving the formation of lead hydroxide (Pb­(OH)2) via a precipitation route. The Pb­(OH)2 subsequently dehydrates to PbO, a process significantly accelerated by temperature. Hence, by controlling temperature, potential, and solution conditions, cathodic electrodeposition of Pb2+ can lead to the preferential formation of PbO crystalline structures on the electrode surface.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.7b00955</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4249-8383</orcidid><orcidid>https://orcid.org/0000-0003-0166-6915</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2017-03, Vol.121 (12), p.6835-6843
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_acs_jpcc_7b00955
source American Chemical Society
title Elucidating the Cathodic Electrodeposition Mechanism of Lead/Lead Oxide Formation in Nitrate Solutions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A49%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elucidating%20the%20Cathodic%20Electrodeposition%20Mechanism%20of%20Lead/Lead%20Oxide%20Formation%20in%20Nitrate%20Solutions&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Meng,%20Lingcong&rft.date=2017-03-30&rft.volume=121&rft.issue=12&rft.spage=6835&rft.epage=6843&rft.pages=6835-6843&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.7b00955&rft_dat=%3Cacs_cross%3Ed26434060%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true