Solvation Structure and Concentration in Glyme-Based Sodium Electrolytes: A Combined Spectroscopic and Computational Study

The optimal salt concentration used in metal-ion energy storage devices has long focused heavily on 1 M electrolytes; however, recent evidence suggests taking a deeper look at electrolyte properties as a function of salt concentration. Toward that goal, the effect of concentration on solvation prope...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2016-08, Vol.120 (32), p.17949-17959
Hauptverfasser: Wahlers, Jessica, Fulfer, Kristen D, Harding, Drew P, Kuroda, Daniel G, Kumar, Revati, Jorn, Ryan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17959
container_issue 32
container_start_page 17949
container_title Journal of physical chemistry. C
container_volume 120
creator Wahlers, Jessica
Fulfer, Kristen D
Harding, Drew P
Kuroda, Daniel G
Kumar, Revati
Jorn, Ryan
description The optimal salt concentration used in metal-ion energy storage devices has long focused heavily on 1 M electrolytes; however, recent evidence suggests taking a deeper look at electrolyte properties as a function of salt concentration. Toward that goal, the effect of concentration on solvation properties for a prototype sodium electrolyte is considered with potential applications for sodium-ion and sodium–air technologies. An empirical force field for sodium triflate in digylme, an electrolyte already in use with sodium–air systems, was developed from ab initio molecular dynamics simulations in conjunction with the variational force-matching method. Atomistic simulations of this electrolyte along with Fourier transform infrared (FTIR) experimental studies validate the qualitative accuracy of the model and demonstrate its transferability across different concentrations. The solvation structure and the extent of ion pairing effects in the electrolyte were considered for concentrations ranging from 0.25 to 2.0 M in the sodium salt. Ion pairing effects are seen even at dilute concentrations of 0.5 M in both simulations and experiments, with a transition from solvent-separated species to direct contact ion pairs as the concentration increased to 1.5 M. With further increase in the concentration, evidence for ion aggregation is also presented.
doi_str_mv 10.1021/acs.jpcc.6b06160
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcc_6b06160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a158950939</sourcerecordid><originalsourceid>FETCH-LOGICAL-a346t-9f4c03157ac7b0898d3579bbed60ccb68094cd091a560479a294d8568b219803</originalsourceid><addsrcrecordid>eNp1kElrwzAQhUVpoely71E_oE5H1mKrtzSkaSHQQ3I32gIOtmUkueD--joLvfU0A9-8N4-H0BOBOYGcvCgT54femLnQIIiAKzQjkuZZwTi__ttZcYvuYjwAcAqEztDP1jffKtW-w9sUBpOG4LDqLF76zrguhTOrO7xuxtZlbyo6i7fe1kOLV40zKfhmTC6-4sWkaXXdHXl_AtH4vjYXu7Yf0slMNdOrwY4P6GavmugeL_Me7d5Xu-VHtvlafy4Xm0xRJlIm98wAJbxQptBQytJSXkitnRVgjBYlSGYsSKK4AFZIlUtmSy5KnRNZAr1HcLY1U6AY3L7qQ92qMFYEqmN11VRddayuulQ3SZ7PkhPxQ5gyx__PfwEjenRc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Solvation Structure and Concentration in Glyme-Based Sodium Electrolytes: A Combined Spectroscopic and Computational Study</title><source>ACS Publications</source><creator>Wahlers, Jessica ; Fulfer, Kristen D ; Harding, Drew P ; Kuroda, Daniel G ; Kumar, Revati ; Jorn, Ryan</creator><creatorcontrib>Wahlers, Jessica ; Fulfer, Kristen D ; Harding, Drew P ; Kuroda, Daniel G ; Kumar, Revati ; Jorn, Ryan</creatorcontrib><description>The optimal salt concentration used in metal-ion energy storage devices has long focused heavily on 1 M electrolytes; however, recent evidence suggests taking a deeper look at electrolyte properties as a function of salt concentration. Toward that goal, the effect of concentration on solvation properties for a prototype sodium electrolyte is considered with potential applications for sodium-ion and sodium–air technologies. An empirical force field for sodium triflate in digylme, an electrolyte already in use with sodium–air systems, was developed from ab initio molecular dynamics simulations in conjunction with the variational force-matching method. Atomistic simulations of this electrolyte along with Fourier transform infrared (FTIR) experimental studies validate the qualitative accuracy of the model and demonstrate its transferability across different concentrations. The solvation structure and the extent of ion pairing effects in the electrolyte were considered for concentrations ranging from 0.25 to 2.0 M in the sodium salt. Ion pairing effects are seen even at dilute concentrations of 0.5 M in both simulations and experiments, with a transition from solvent-separated species to direct contact ion pairs as the concentration increased to 1.5 M. With further increase in the concentration, evidence for ion aggregation is also presented.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.6b06160</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of physical chemistry. C, 2016-08, Vol.120 (32), p.17949-17959</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a346t-9f4c03157ac7b0898d3579bbed60ccb68094cd091a560479a294d8568b219803</citedby><cites>FETCH-LOGICAL-a346t-9f4c03157ac7b0898d3579bbed60ccb68094cd091a560479a294d8568b219803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.6b06160$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.6b06160$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,56743,56793</link.rule.ids></links><search><creatorcontrib>Wahlers, Jessica</creatorcontrib><creatorcontrib>Fulfer, Kristen D</creatorcontrib><creatorcontrib>Harding, Drew P</creatorcontrib><creatorcontrib>Kuroda, Daniel G</creatorcontrib><creatorcontrib>Kumar, Revati</creatorcontrib><creatorcontrib>Jorn, Ryan</creatorcontrib><title>Solvation Structure and Concentration in Glyme-Based Sodium Electrolytes: A Combined Spectroscopic and Computational Study</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>The optimal salt concentration used in metal-ion energy storage devices has long focused heavily on 1 M electrolytes; however, recent evidence suggests taking a deeper look at electrolyte properties as a function of salt concentration. Toward that goal, the effect of concentration on solvation properties for a prototype sodium electrolyte is considered with potential applications for sodium-ion and sodium–air technologies. An empirical force field for sodium triflate in digylme, an electrolyte already in use with sodium–air systems, was developed from ab initio molecular dynamics simulations in conjunction with the variational force-matching method. Atomistic simulations of this electrolyte along with Fourier transform infrared (FTIR) experimental studies validate the qualitative accuracy of the model and demonstrate its transferability across different concentrations. The solvation structure and the extent of ion pairing effects in the electrolyte were considered for concentrations ranging from 0.25 to 2.0 M in the sodium salt. Ion pairing effects are seen even at dilute concentrations of 0.5 M in both simulations and experiments, with a transition from solvent-separated species to direct contact ion pairs as the concentration increased to 1.5 M. With further increase in the concentration, evidence for ion aggregation is also presented.</description><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kElrwzAQhUVpoely71E_oE5H1mKrtzSkaSHQQ3I32gIOtmUkueD--joLvfU0A9-8N4-H0BOBOYGcvCgT54femLnQIIiAKzQjkuZZwTi__ttZcYvuYjwAcAqEztDP1jffKtW-w9sUBpOG4LDqLF76zrguhTOrO7xuxtZlbyo6i7fe1kOLV40zKfhmTC6-4sWkaXXdHXl_AtH4vjYXu7Yf0slMNdOrwY4P6GavmugeL_Me7d5Xu-VHtvlafy4Xm0xRJlIm98wAJbxQptBQytJSXkitnRVgjBYlSGYsSKK4AFZIlUtmSy5KnRNZAr1HcLY1U6AY3L7qQ92qMFYEqmN11VRddayuulQ3SZ7PkhPxQ5gyx__PfwEjenRc</recordid><startdate>20160818</startdate><enddate>20160818</enddate><creator>Wahlers, Jessica</creator><creator>Fulfer, Kristen D</creator><creator>Harding, Drew P</creator><creator>Kuroda, Daniel G</creator><creator>Kumar, Revati</creator><creator>Jorn, Ryan</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160818</creationdate><title>Solvation Structure and Concentration in Glyme-Based Sodium Electrolytes: A Combined Spectroscopic and Computational Study</title><author>Wahlers, Jessica ; Fulfer, Kristen D ; Harding, Drew P ; Kuroda, Daniel G ; Kumar, Revati ; Jorn, Ryan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a346t-9f4c03157ac7b0898d3579bbed60ccb68094cd091a560479a294d8568b219803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wahlers, Jessica</creatorcontrib><creatorcontrib>Fulfer, Kristen D</creatorcontrib><creatorcontrib>Harding, Drew P</creatorcontrib><creatorcontrib>Kuroda, Daniel G</creatorcontrib><creatorcontrib>Kumar, Revati</creatorcontrib><creatorcontrib>Jorn, Ryan</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wahlers, Jessica</au><au>Fulfer, Kristen D</au><au>Harding, Drew P</au><au>Kuroda, Daniel G</au><au>Kumar, Revati</au><au>Jorn, Ryan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solvation Structure and Concentration in Glyme-Based Sodium Electrolytes: A Combined Spectroscopic and Computational Study</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2016-08-18</date><risdate>2016</risdate><volume>120</volume><issue>32</issue><spage>17949</spage><epage>17959</epage><pages>17949-17959</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>The optimal salt concentration used in metal-ion energy storage devices has long focused heavily on 1 M electrolytes; however, recent evidence suggests taking a deeper look at electrolyte properties as a function of salt concentration. Toward that goal, the effect of concentration on solvation properties for a prototype sodium electrolyte is considered with potential applications for sodium-ion and sodium–air technologies. An empirical force field for sodium triflate in digylme, an electrolyte already in use with sodium–air systems, was developed from ab initio molecular dynamics simulations in conjunction with the variational force-matching method. Atomistic simulations of this electrolyte along with Fourier transform infrared (FTIR) experimental studies validate the qualitative accuracy of the model and demonstrate its transferability across different concentrations. The solvation structure and the extent of ion pairing effects in the electrolyte were considered for concentrations ranging from 0.25 to 2.0 M in the sodium salt. Ion pairing effects are seen even at dilute concentrations of 0.5 M in both simulations and experiments, with a transition from solvent-separated species to direct contact ion pairs as the concentration increased to 1.5 M. With further increase in the concentration, evidence for ion aggregation is also presented.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.6b06160</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2016-08, Vol.120 (32), p.17949-17959
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_acs_jpcc_6b06160
source ACS Publications
title Solvation Structure and Concentration in Glyme-Based Sodium Electrolytes: A Combined Spectroscopic and Computational Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T01%3A13%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solvation%20Structure%20and%20Concentration%20in%20Glyme-Based%20Sodium%20Electrolytes:%20A%20Combined%20Spectroscopic%20and%20Computational%20Study&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Wahlers,%20Jessica&rft.date=2016-08-18&rft.volume=120&rft.issue=32&rft.spage=17949&rft.epage=17959&rft.pages=17949-17959&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.6b06160&rft_dat=%3Cacs_cross%3Ea158950939%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true