Plasmon Evolution in Core–Shell Nanospheroids

In order to explore the fundamental features of plasmon evolutions in the plasmonic nanostructures along variable geometrical parameters, TiO2–Ag core–shell nanospheroids, which have the distinguishable antibonding and bonding modes, are first used to illustrate the phenomena of plasmon evolutions b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2016-04, Vol.120 (16), p.8891-8899
Hauptverfasser: Li, Quanshui, Zhang, Zhili
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8899
container_issue 16
container_start_page 8891
container_title Journal of physical chemistry. C
container_volume 120
creator Li, Quanshui
Zhang, Zhili
description In order to explore the fundamental features of plasmon evolutions in the plasmonic nanostructures along variable geometrical parameters, TiO2–Ag core–shell nanospheroids, which have the distinguishable antibonding and bonding modes, are first used to illustrate the phenomena of plasmon evolutions by simulations. The usual peak-shift behaviors and appearance of the new modes are observed in the far-field extinction spectra. Beneath those phenomena, the unusual mode transformations occur in some modes. In the variable core configuration, when the inner surface of the silver shell is in a close proximity to the outer surface, the dipole antibonding mode evolves to be mixed with the quadrupole mode on the outer surface, while the new emerging mode evolves to the octupole antibonding modes. In the variable shell configuration, when the outer surface approaches the inner surface, the dipole bonding mode tends to evolve to the octupole bonding mode and the new modes emerge and tend to be the triakontadipole-like and octupole-like mode on the outer and inner surfaces. When the polar radius is so large that the outer surface is far away from the inner surface, the dipole antibonding mode evolves to the octupole antibonding mode and the new mode emerges which belongs to the octupole bonding mode. In mode transformation phenomena, one feature is that the evolution is associated with the odd l number (l = 1 for dipole, l = 3 for octupole, and l = 5 for triakontadipole) except for the mixed modes. Another feature is that the antibonding modes can evolve from the octupole to dipole and then octupole modes, in which process the charge distributions for the octupole modes are totally inverse. The retardation effects and the dielectric core effects are also discussed based on the phenomena of the higher order modes. The peak-shift behaviors, the appearance of the new modes, and the mode transformation along variable geometrical parameters have great importance in plasmonic applications due to the tunable resonance wavelength and the local field control.
doi_str_mv 10.1021/acs.jpcc.6b01787
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcc_6b01787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>g19497859</sourcerecordid><originalsourceid>FETCH-LOGICAL-a280t-1d4ebca0c77ba837690bce61047a07d60e7f78e507876b9cf679cf5d867c3deb3</originalsourceid><addsrcrecordid>eNp1j81Kw0AUhQdRsFb3LvMAJr2TSeYmSwnVCkUFdT3MX2hKmgkzreDOd_ANfRKntrhzc--Bc8_lfIRcU8go5HQmdcjWo9YZV0CxwhMyoTXLUyzK8vRPF3hOLkJYA5QMKJuQ2XMvw8YNyfzd9bttF1U3JI3z9vvz62Vl-z55lIML48p615lwSc5a2Qd7ddxT8nY3f20W6fLp_qG5XaYyr2CbUlNYpSVoRCUrhrwGpS2nUKAENBwstljZEmJTrmrdcoyjNBVHzYxVbErg8Fd7F4K3rRh9t5H-Q1AQe2ARgcUeWByBY-TmEPl13M4PseD_5z-EZVrO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Plasmon Evolution in Core–Shell Nanospheroids</title><source>American Chemical Society Journals</source><creator>Li, Quanshui ; Zhang, Zhili</creator><creatorcontrib>Li, Quanshui ; Zhang, Zhili</creatorcontrib><description>In order to explore the fundamental features of plasmon evolutions in the plasmonic nanostructures along variable geometrical parameters, TiO2–Ag core–shell nanospheroids, which have the distinguishable antibonding and bonding modes, are first used to illustrate the phenomena of plasmon evolutions by simulations. The usual peak-shift behaviors and appearance of the new modes are observed in the far-field extinction spectra. Beneath those phenomena, the unusual mode transformations occur in some modes. In the variable core configuration, when the inner surface of the silver shell is in a close proximity to the outer surface, the dipole antibonding mode evolves to be mixed with the quadrupole mode on the outer surface, while the new emerging mode evolves to the octupole antibonding modes. In the variable shell configuration, when the outer surface approaches the inner surface, the dipole bonding mode tends to evolve to the octupole bonding mode and the new modes emerge and tend to be the triakontadipole-like and octupole-like mode on the outer and inner surfaces. When the polar radius is so large that the outer surface is far away from the inner surface, the dipole antibonding mode evolves to the octupole antibonding mode and the new mode emerges which belongs to the octupole bonding mode. In mode transformation phenomena, one feature is that the evolution is associated with the odd l number (l = 1 for dipole, l = 3 for octupole, and l = 5 for triakontadipole) except for the mixed modes. Another feature is that the antibonding modes can evolve from the octupole to dipole and then octupole modes, in which process the charge distributions for the octupole modes are totally inverse. The retardation effects and the dielectric core effects are also discussed based on the phenomena of the higher order modes. The peak-shift behaviors, the appearance of the new modes, and the mode transformation along variable geometrical parameters have great importance in plasmonic applications due to the tunable resonance wavelength and the local field control.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.6b01787</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of physical chemistry. C, 2016-04, Vol.120 (16), p.8891-8899</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a280t-1d4ebca0c77ba837690bce61047a07d60e7f78e507876b9cf679cf5d867c3deb3</citedby><cites>FETCH-LOGICAL-a280t-1d4ebca0c77ba837690bce61047a07d60e7f78e507876b9cf679cf5d867c3deb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.6b01787$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.6b01787$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56717,56767</link.rule.ids></links><search><creatorcontrib>Li, Quanshui</creatorcontrib><creatorcontrib>Zhang, Zhili</creatorcontrib><title>Plasmon Evolution in Core–Shell Nanospheroids</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>In order to explore the fundamental features of plasmon evolutions in the plasmonic nanostructures along variable geometrical parameters, TiO2–Ag core–shell nanospheroids, which have the distinguishable antibonding and bonding modes, are first used to illustrate the phenomena of plasmon evolutions by simulations. The usual peak-shift behaviors and appearance of the new modes are observed in the far-field extinction spectra. Beneath those phenomena, the unusual mode transformations occur in some modes. In the variable core configuration, when the inner surface of the silver shell is in a close proximity to the outer surface, the dipole antibonding mode evolves to be mixed with the quadrupole mode on the outer surface, while the new emerging mode evolves to the octupole antibonding modes. In the variable shell configuration, when the outer surface approaches the inner surface, the dipole bonding mode tends to evolve to the octupole bonding mode and the new modes emerge and tend to be the triakontadipole-like and octupole-like mode on the outer and inner surfaces. When the polar radius is so large that the outer surface is far away from the inner surface, the dipole antibonding mode evolves to the octupole antibonding mode and the new mode emerges which belongs to the octupole bonding mode. In mode transformation phenomena, one feature is that the evolution is associated with the odd l number (l = 1 for dipole, l = 3 for octupole, and l = 5 for triakontadipole) except for the mixed modes. Another feature is that the antibonding modes can evolve from the octupole to dipole and then octupole modes, in which process the charge distributions for the octupole modes are totally inverse. The retardation effects and the dielectric core effects are also discussed based on the phenomena of the higher order modes. The peak-shift behaviors, the appearance of the new modes, and the mode transformation along variable geometrical parameters have great importance in plasmonic applications due to the tunable resonance wavelength and the local field control.</description><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1j81Kw0AUhQdRsFb3LvMAJr2TSeYmSwnVCkUFdT3MX2hKmgkzreDOd_ANfRKntrhzc--Bc8_lfIRcU8go5HQmdcjWo9YZV0CxwhMyoTXLUyzK8vRPF3hOLkJYA5QMKJuQ2XMvw8YNyfzd9bttF1U3JI3z9vvz62Vl-z55lIML48p615lwSc5a2Qd7ddxT8nY3f20W6fLp_qG5XaYyr2CbUlNYpSVoRCUrhrwGpS2nUKAENBwstljZEmJTrmrdcoyjNBVHzYxVbErg8Fd7F4K3rRh9t5H-Q1AQe2ARgcUeWByBY-TmEPl13M4PseD_5z-EZVrO</recordid><startdate>20160428</startdate><enddate>20160428</enddate><creator>Li, Quanshui</creator><creator>Zhang, Zhili</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160428</creationdate><title>Plasmon Evolution in Core–Shell Nanospheroids</title><author>Li, Quanshui ; Zhang, Zhili</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a280t-1d4ebca0c77ba837690bce61047a07d60e7f78e507876b9cf679cf5d867c3deb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Quanshui</creatorcontrib><creatorcontrib>Zhang, Zhili</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Quanshui</au><au>Zhang, Zhili</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasmon Evolution in Core–Shell Nanospheroids</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2016-04-28</date><risdate>2016</risdate><volume>120</volume><issue>16</issue><spage>8891</spage><epage>8899</epage><pages>8891-8899</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>In order to explore the fundamental features of plasmon evolutions in the plasmonic nanostructures along variable geometrical parameters, TiO2–Ag core–shell nanospheroids, which have the distinguishable antibonding and bonding modes, are first used to illustrate the phenomena of plasmon evolutions by simulations. The usual peak-shift behaviors and appearance of the new modes are observed in the far-field extinction spectra. Beneath those phenomena, the unusual mode transformations occur in some modes. In the variable core configuration, when the inner surface of the silver shell is in a close proximity to the outer surface, the dipole antibonding mode evolves to be mixed with the quadrupole mode on the outer surface, while the new emerging mode evolves to the octupole antibonding modes. In the variable shell configuration, when the outer surface approaches the inner surface, the dipole bonding mode tends to evolve to the octupole bonding mode and the new modes emerge and tend to be the triakontadipole-like and octupole-like mode on the outer and inner surfaces. When the polar radius is so large that the outer surface is far away from the inner surface, the dipole antibonding mode evolves to the octupole antibonding mode and the new mode emerges which belongs to the octupole bonding mode. In mode transformation phenomena, one feature is that the evolution is associated with the odd l number (l = 1 for dipole, l = 3 for octupole, and l = 5 for triakontadipole) except for the mixed modes. Another feature is that the antibonding modes can evolve from the octupole to dipole and then octupole modes, in which process the charge distributions for the octupole modes are totally inverse. The retardation effects and the dielectric core effects are also discussed based on the phenomena of the higher order modes. The peak-shift behaviors, the appearance of the new modes, and the mode transformation along variable geometrical parameters have great importance in plasmonic applications due to the tunable resonance wavelength and the local field control.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.6b01787</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2016-04, Vol.120 (16), p.8891-8899
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_acs_jpcc_6b01787
source American Chemical Society Journals
title Plasmon Evolution in Core–Shell Nanospheroids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A49%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasmon%20Evolution%20in%20Core%E2%80%93Shell%20Nanospheroids&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Li,%20Quanshui&rft.date=2016-04-28&rft.volume=120&rft.issue=16&rft.spage=8891&rft.epage=8899&rft.pages=8891-8899&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.6b01787&rft_dat=%3Cacs_cross%3Eg19497859%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true