Reactive Structural Motifs of Au Nanoclusters for Oxygen Activation and Subsequent CO Oxidation

Understanding the size-dependent oxygen affinity of small Au nanoparticles (NPs) and nanoclusters (NCs) is central to the rational design of Au oxidation catalysts. However, relevant complete experimental or computational information on the intrinsic catalytic nature of Au NPs/NCs is scarce. Here, t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2016-05, Vol.120 (17), p.9292-9298
Hauptverfasser: An, Hyesung, Kwon, Soonho, Ha, Hyunwoo, Kim, Hyun You, Lee, Hyuck Mo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9298
container_issue 17
container_start_page 9292
container_title Journal of physical chemistry. C
container_volume 120
creator An, Hyesung
Kwon, Soonho
Ha, Hyunwoo
Kim, Hyun You
Lee, Hyuck Mo
description Understanding the size-dependent oxygen affinity of small Au nanoparticles (NPs) and nanoclusters (NCs) is central to the rational design of Au oxidation catalysts. However, relevant complete experimental or computational information on the intrinsic catalytic nature of Au NPs/NCs is scarce. Here, to provide fundamental insights into the intrinsic size- and coordination-dependent catalytic nature of free-standing small Au NPs/NCs for oxidation reactions, we constructed small unsupported Au n (n = 1–10, 13, 19, 20, 25, 38, and 55) NCs and scrutinized their oxygen-adsorption chemistry and corresponding CO oxidation activity using density functional theory (DFT) calculations. Strong oxygen binding to Au n NCs is essential for facile CO oxidation. Among our studied Au NCs, only the tiny Au3, Au5, and Au7 NCs strongly bound O2 and CO. The subsequent CO oxidation pathways studied by DFT confirmed that Au5 exhibited the highest CO oxidation rate among the studied Au NCs. We observed that only highly limited, tiny Au NCs with a specific structural motif can catalyze CO oxidation themselves. We observed that a delicate balance between the energy of CO adsorption and that of O2 adsorption is required to maximize the catalytic activity of Au NCs with respect to CO oxidation.
doi_str_mv 10.1021/acs.jpcc.6b01774
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcc_6b01774</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a200594913</sourcerecordid><originalsourceid>FETCH-LOGICAL-a346t-21658c90ab9ee39696264378e4f25740c0d397e23e31edd68660c94fe7aec4ef3</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMoWKt7l3kAZ0wmmaRZDsUbVAtW1yHNnMiUOqm5iH17pxfcuToH_v87HD6ErikpKanorbGxXG2sLcWSUCn5CRpRxapC8ro-_du5PEcXMa4IqRmhbIT0Kxibum_AixSyTTmYNX72qXMRe4ebjF9M7-06xwQhYucDnv9sP6DHzQ4zqfM9Nn2LF3kZ4StDn_B0PnS6dp9dojNn1hGujnOM3u_v3qaPxWz-8DRtZoVhXKSioqKeWEXMUgEwJZSoBGdyAtxVteTEkpYpCRUDRqFtxUQIYhV3IA1YDo6NETnctcHHGMDpTeg-TdhqSvROkB4E6Z0gfRQ0IDcHZJ_4HPrhwf_rv7lvatI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Reactive Structural Motifs of Au Nanoclusters for Oxygen Activation and Subsequent CO Oxidation</title><source>American Chemical Society Journals</source><creator>An, Hyesung ; Kwon, Soonho ; Ha, Hyunwoo ; Kim, Hyun You ; Lee, Hyuck Mo</creator><creatorcontrib>An, Hyesung ; Kwon, Soonho ; Ha, Hyunwoo ; Kim, Hyun You ; Lee, Hyuck Mo</creatorcontrib><description>Understanding the size-dependent oxygen affinity of small Au nanoparticles (NPs) and nanoclusters (NCs) is central to the rational design of Au oxidation catalysts. However, relevant complete experimental or computational information on the intrinsic catalytic nature of Au NPs/NCs is scarce. Here, to provide fundamental insights into the intrinsic size- and coordination-dependent catalytic nature of free-standing small Au NPs/NCs for oxidation reactions, we constructed small unsupported Au n (n = 1–10, 13, 19, 20, 25, 38, and 55) NCs and scrutinized their oxygen-adsorption chemistry and corresponding CO oxidation activity using density functional theory (DFT) calculations. Strong oxygen binding to Au n NCs is essential for facile CO oxidation. Among our studied Au NCs, only the tiny Au3, Au5, and Au7 NCs strongly bound O2 and CO. The subsequent CO oxidation pathways studied by DFT confirmed that Au5 exhibited the highest CO oxidation rate among the studied Au NCs. We observed that only highly limited, tiny Au NCs with a specific structural motif can catalyze CO oxidation themselves. We observed that a delicate balance between the energy of CO adsorption and that of O2 adsorption is required to maximize the catalytic activity of Au NCs with respect to CO oxidation.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.6b01774</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of physical chemistry. C, 2016-05, Vol.120 (17), p.9292-9298</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a346t-21658c90ab9ee39696264378e4f25740c0d397e23e31edd68660c94fe7aec4ef3</citedby><cites>FETCH-LOGICAL-a346t-21658c90ab9ee39696264378e4f25740c0d397e23e31edd68660c94fe7aec4ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.6b01774$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.6b01774$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>An, Hyesung</creatorcontrib><creatorcontrib>Kwon, Soonho</creatorcontrib><creatorcontrib>Ha, Hyunwoo</creatorcontrib><creatorcontrib>Kim, Hyun You</creatorcontrib><creatorcontrib>Lee, Hyuck Mo</creatorcontrib><title>Reactive Structural Motifs of Au Nanoclusters for Oxygen Activation and Subsequent CO Oxidation</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Understanding the size-dependent oxygen affinity of small Au nanoparticles (NPs) and nanoclusters (NCs) is central to the rational design of Au oxidation catalysts. However, relevant complete experimental or computational information on the intrinsic catalytic nature of Au NPs/NCs is scarce. Here, to provide fundamental insights into the intrinsic size- and coordination-dependent catalytic nature of free-standing small Au NPs/NCs for oxidation reactions, we constructed small unsupported Au n (n = 1–10, 13, 19, 20, 25, 38, and 55) NCs and scrutinized their oxygen-adsorption chemistry and corresponding CO oxidation activity using density functional theory (DFT) calculations. Strong oxygen binding to Au n NCs is essential for facile CO oxidation. Among our studied Au NCs, only the tiny Au3, Au5, and Au7 NCs strongly bound O2 and CO. The subsequent CO oxidation pathways studied by DFT confirmed that Au5 exhibited the highest CO oxidation rate among the studied Au NCs. We observed that only highly limited, tiny Au NCs with a specific structural motif can catalyze CO oxidation themselves. We observed that a delicate balance between the energy of CO adsorption and that of O2 adsorption is required to maximize the catalytic activity of Au NCs with respect to CO oxidation.</description><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKAzEUhoMoWKt7l3kAZ0wmmaRZDsUbVAtW1yHNnMiUOqm5iH17pxfcuToH_v87HD6ErikpKanorbGxXG2sLcWSUCn5CRpRxapC8ro-_du5PEcXMa4IqRmhbIT0Kxibum_AixSyTTmYNX72qXMRe4ebjF9M7-06xwQhYucDnv9sP6DHzQ4zqfM9Nn2LF3kZ4StDn_B0PnS6dp9dojNn1hGujnOM3u_v3qaPxWz-8DRtZoVhXKSioqKeWEXMUgEwJZSoBGdyAtxVteTEkpYpCRUDRqFtxUQIYhV3IA1YDo6NETnctcHHGMDpTeg-TdhqSvROkB4E6Z0gfRQ0IDcHZJ_4HPrhwf_rv7lvatI</recordid><startdate>20160505</startdate><enddate>20160505</enddate><creator>An, Hyesung</creator><creator>Kwon, Soonho</creator><creator>Ha, Hyunwoo</creator><creator>Kim, Hyun You</creator><creator>Lee, Hyuck Mo</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160505</creationdate><title>Reactive Structural Motifs of Au Nanoclusters for Oxygen Activation and Subsequent CO Oxidation</title><author>An, Hyesung ; Kwon, Soonho ; Ha, Hyunwoo ; Kim, Hyun You ; Lee, Hyuck Mo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a346t-21658c90ab9ee39696264378e4f25740c0d397e23e31edd68660c94fe7aec4ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>An, Hyesung</creatorcontrib><creatorcontrib>Kwon, Soonho</creatorcontrib><creatorcontrib>Ha, Hyunwoo</creatorcontrib><creatorcontrib>Kim, Hyun You</creatorcontrib><creatorcontrib>Lee, Hyuck Mo</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>An, Hyesung</au><au>Kwon, Soonho</au><au>Ha, Hyunwoo</au><au>Kim, Hyun You</au><au>Lee, Hyuck Mo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reactive Structural Motifs of Au Nanoclusters for Oxygen Activation and Subsequent CO Oxidation</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2016-05-05</date><risdate>2016</risdate><volume>120</volume><issue>17</issue><spage>9292</spage><epage>9298</epage><pages>9292-9298</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Understanding the size-dependent oxygen affinity of small Au nanoparticles (NPs) and nanoclusters (NCs) is central to the rational design of Au oxidation catalysts. However, relevant complete experimental or computational information on the intrinsic catalytic nature of Au NPs/NCs is scarce. Here, to provide fundamental insights into the intrinsic size- and coordination-dependent catalytic nature of free-standing small Au NPs/NCs for oxidation reactions, we constructed small unsupported Au n (n = 1–10, 13, 19, 20, 25, 38, and 55) NCs and scrutinized their oxygen-adsorption chemistry and corresponding CO oxidation activity using density functional theory (DFT) calculations. Strong oxygen binding to Au n NCs is essential for facile CO oxidation. Among our studied Au NCs, only the tiny Au3, Au5, and Au7 NCs strongly bound O2 and CO. The subsequent CO oxidation pathways studied by DFT confirmed that Au5 exhibited the highest CO oxidation rate among the studied Au NCs. We observed that only highly limited, tiny Au NCs with a specific structural motif can catalyze CO oxidation themselves. We observed that a delicate balance between the energy of CO adsorption and that of O2 adsorption is required to maximize the catalytic activity of Au NCs with respect to CO oxidation.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.6b01774</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2016-05, Vol.120 (17), p.9292-9298
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_acs_jpcc_6b01774
source American Chemical Society Journals
title Reactive Structural Motifs of Au Nanoclusters for Oxygen Activation and Subsequent CO Oxidation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T08%3A38%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reactive%20Structural%20Motifs%20of%20Au%20Nanoclusters%20for%20Oxygen%20Activation%20and%20Subsequent%20CO%20Oxidation&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=An,%20Hyesung&rft.date=2016-05-05&rft.volume=120&rft.issue=17&rft.spage=9292&rft.epage=9298&rft.pages=9292-9298&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.6b01774&rft_dat=%3Cacs_cross%3Ea200594913%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true