Kinetics of ZIF‑8 Thermal Decomposition in Inert, Oxidizing, and Reducing Environments

Zeolitic imidazolate frameworks (ZIFs) have been foregrounded as structures with exceptional, intrinsic chemical and thermal stability. However, there has yet to be a systematic study of the isothermal stability of ZIFs, specifically the well-studied ZIF-8. In this work, ZIF-8 isothermal TGA decompo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2016-07, Vol.120 (26), p.14015-14026
Hauptverfasser: James, Joshua B, Lin, Y. S
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14026
container_issue 26
container_start_page 14015
container_title Journal of physical chemistry. C
container_volume 120
creator James, Joshua B
Lin, Y. S
description Zeolitic imidazolate frameworks (ZIFs) have been foregrounded as structures with exceptional, intrinsic chemical and thermal stability. However, there has yet to be a systematic study of the isothermal stability of ZIFs, specifically the well-studied ZIF-8. In this work, ZIF-8 isothermal TGA decomposition kinetics were studied in air, argon, H2/CO2, and nitrogen environments by exposing ZIF-8 to each gas for 20 h at temperatures of 200, 250, and 300 °C, respectively. ZIF-8 crystallinity was preserved under the experimental isothermal conditions at 200 °C in each atmosphere, but crystallinity was increasingly eliminated at higher temperatures. Decomposition kinetics data show that the rate of ZIF-8 carbonization significantly increases at temperatures above 200 °C irrespective of environment. ZIF-8 decomposition in the H2/CO2 reducing mixture exhibits the slowest decomposition kinetics at all temperatures and the greatest morphological change. At 300 °C, oxidative effects enhance ZIF-8 decomposition in air. At lower temperatures the decomposition rate in air behaves more similarly to that of nitrogen and argon. Arrhenius activation energy parameters enable postulation that the temperature dependency of ZIF-8 thermal decomposition after carbonization at 300 °C is more similar upon decomposition in inert and reducing environments as compared to decomposition in oxidizing atmosphere. Four chemical equations inferring the residual carbonized ZIF structure after decomposition at 300 °C were developed based upon EDS quantification and FTIR/azirine formation models. The FTIR/azirine derived model postulates a heterogeneous carbonized ZIF-8 structure containing 2-methylimidazole and azirine rings coordinated to zinc and more precisely agreed with TGA weight decomposition data than the EDS derived model.
doi_str_mv 10.1021/acs.jpcc.6b01208
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcc_6b01208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b67675480</sourcerecordid><originalsourceid>FETCH-LOGICAL-a383t-166fd95aa122ca7ac72e9e0b0c49523955cbaaccc932916ea75edfab6666da4f3</originalsourceid><addsrcrecordid>eNp1kM9Kw0AQxhdRsFbvHvcBmrh_sklzlNpqsVCQCuIlTCYb3dLslt1UqidfwVf0SUxt8eZcZoaZ7-PjR8glZzFngl8Bhni5RozTknHBhkekx3MpoixR6vhvTrJTchbCkjElGZc98nRvrG4NBupq-jydfH9-DeniVfsGVvRGo2vWLpjWOEuNpVOrfTug862pzIexLwMKtqIPutpgt9GxfTPe2UbbNpyTkxpWQV8cep88TsaL0V00m99OR9ezCORQthFP07rKFQAXAiEDzITONSsZJrkSMlcKSwBE7PLnPNWQKV3VUKZdVZDUsk_Y3he9C8Hrulh704B_LzgrdmSKjkyxI1McyHSSwV7ye3Ebb7uA_7__AAI1aVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Kinetics of ZIF‑8 Thermal Decomposition in Inert, Oxidizing, and Reducing Environments</title><source>ACS Publications</source><creator>James, Joshua B ; Lin, Y. S</creator><creatorcontrib>James, Joshua B ; Lin, Y. S</creatorcontrib><description>Zeolitic imidazolate frameworks (ZIFs) have been foregrounded as structures with exceptional, intrinsic chemical and thermal stability. However, there has yet to be a systematic study of the isothermal stability of ZIFs, specifically the well-studied ZIF-8. In this work, ZIF-8 isothermal TGA decomposition kinetics were studied in air, argon, H2/CO2, and nitrogen environments by exposing ZIF-8 to each gas for 20 h at temperatures of 200, 250, and 300 °C, respectively. ZIF-8 crystallinity was preserved under the experimental isothermal conditions at 200 °C in each atmosphere, but crystallinity was increasingly eliminated at higher temperatures. Decomposition kinetics data show that the rate of ZIF-8 carbonization significantly increases at temperatures above 200 °C irrespective of environment. ZIF-8 decomposition in the H2/CO2 reducing mixture exhibits the slowest decomposition kinetics at all temperatures and the greatest morphological change. At 300 °C, oxidative effects enhance ZIF-8 decomposition in air. At lower temperatures the decomposition rate in air behaves more similarly to that of nitrogen and argon. Arrhenius activation energy parameters enable postulation that the temperature dependency of ZIF-8 thermal decomposition after carbonization at 300 °C is more similar upon decomposition in inert and reducing environments as compared to decomposition in oxidizing atmosphere. Four chemical equations inferring the residual carbonized ZIF structure after decomposition at 300 °C were developed based upon EDS quantification and FTIR/azirine formation models. The FTIR/azirine derived model postulates a heterogeneous carbonized ZIF-8 structure containing 2-methylimidazole and azirine rings coordinated to zinc and more precisely agreed with TGA weight decomposition data than the EDS derived model.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.6b01208</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of physical chemistry. C, 2016-07, Vol.120 (26), p.14015-14026</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a383t-166fd95aa122ca7ac72e9e0b0c49523955cbaaccc932916ea75edfab6666da4f3</citedby><cites>FETCH-LOGICAL-a383t-166fd95aa122ca7ac72e9e0b0c49523955cbaaccc932916ea75edfab6666da4f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.6b01208$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.6b01208$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>James, Joshua B</creatorcontrib><creatorcontrib>Lin, Y. S</creatorcontrib><title>Kinetics of ZIF‑8 Thermal Decomposition in Inert, Oxidizing, and Reducing Environments</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Zeolitic imidazolate frameworks (ZIFs) have been foregrounded as structures with exceptional, intrinsic chemical and thermal stability. However, there has yet to be a systematic study of the isothermal stability of ZIFs, specifically the well-studied ZIF-8. In this work, ZIF-8 isothermal TGA decomposition kinetics were studied in air, argon, H2/CO2, and nitrogen environments by exposing ZIF-8 to each gas for 20 h at temperatures of 200, 250, and 300 °C, respectively. ZIF-8 crystallinity was preserved under the experimental isothermal conditions at 200 °C in each atmosphere, but crystallinity was increasingly eliminated at higher temperatures. Decomposition kinetics data show that the rate of ZIF-8 carbonization significantly increases at temperatures above 200 °C irrespective of environment. ZIF-8 decomposition in the H2/CO2 reducing mixture exhibits the slowest decomposition kinetics at all temperatures and the greatest morphological change. At 300 °C, oxidative effects enhance ZIF-8 decomposition in air. At lower temperatures the decomposition rate in air behaves more similarly to that of nitrogen and argon. Arrhenius activation energy parameters enable postulation that the temperature dependency of ZIF-8 thermal decomposition after carbonization at 300 °C is more similar upon decomposition in inert and reducing environments as compared to decomposition in oxidizing atmosphere. Four chemical equations inferring the residual carbonized ZIF structure after decomposition at 300 °C were developed based upon EDS quantification and FTIR/azirine formation models. The FTIR/azirine derived model postulates a heterogeneous carbonized ZIF-8 structure containing 2-methylimidazole and azirine rings coordinated to zinc and more precisely agreed with TGA weight decomposition data than the EDS derived model.</description><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kM9Kw0AQxhdRsFbvHvcBmrh_sklzlNpqsVCQCuIlTCYb3dLslt1UqidfwVf0SUxt8eZcZoaZ7-PjR8glZzFngl8Bhni5RozTknHBhkekx3MpoixR6vhvTrJTchbCkjElGZc98nRvrG4NBupq-jydfH9-DeniVfsGVvRGo2vWLpjWOEuNpVOrfTug862pzIexLwMKtqIPutpgt9GxfTPe2UbbNpyTkxpWQV8cep88TsaL0V00m99OR9ezCORQthFP07rKFQAXAiEDzITONSsZJrkSMlcKSwBE7PLnPNWQKV3VUKZdVZDUsk_Y3he9C8Hrulh704B_LzgrdmSKjkyxI1McyHSSwV7ye3Ebb7uA_7__AAI1aVw</recordid><startdate>20160707</startdate><enddate>20160707</enddate><creator>James, Joshua B</creator><creator>Lin, Y. S</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160707</creationdate><title>Kinetics of ZIF‑8 Thermal Decomposition in Inert, Oxidizing, and Reducing Environments</title><author>James, Joshua B ; Lin, Y. S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a383t-166fd95aa122ca7ac72e9e0b0c49523955cbaaccc932916ea75edfab6666da4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>James, Joshua B</creatorcontrib><creatorcontrib>Lin, Y. S</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>James, Joshua B</au><au>Lin, Y. S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetics of ZIF‑8 Thermal Decomposition in Inert, Oxidizing, and Reducing Environments</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2016-07-07</date><risdate>2016</risdate><volume>120</volume><issue>26</issue><spage>14015</spage><epage>14026</epage><pages>14015-14026</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Zeolitic imidazolate frameworks (ZIFs) have been foregrounded as structures with exceptional, intrinsic chemical and thermal stability. However, there has yet to be a systematic study of the isothermal stability of ZIFs, specifically the well-studied ZIF-8. In this work, ZIF-8 isothermal TGA decomposition kinetics were studied in air, argon, H2/CO2, and nitrogen environments by exposing ZIF-8 to each gas for 20 h at temperatures of 200, 250, and 300 °C, respectively. ZIF-8 crystallinity was preserved under the experimental isothermal conditions at 200 °C in each atmosphere, but crystallinity was increasingly eliminated at higher temperatures. Decomposition kinetics data show that the rate of ZIF-8 carbonization significantly increases at temperatures above 200 °C irrespective of environment. ZIF-8 decomposition in the H2/CO2 reducing mixture exhibits the slowest decomposition kinetics at all temperatures and the greatest morphological change. At 300 °C, oxidative effects enhance ZIF-8 decomposition in air. At lower temperatures the decomposition rate in air behaves more similarly to that of nitrogen and argon. Arrhenius activation energy parameters enable postulation that the temperature dependency of ZIF-8 thermal decomposition after carbonization at 300 °C is more similar upon decomposition in inert and reducing environments as compared to decomposition in oxidizing atmosphere. Four chemical equations inferring the residual carbonized ZIF structure after decomposition at 300 °C were developed based upon EDS quantification and FTIR/azirine formation models. The FTIR/azirine derived model postulates a heterogeneous carbonized ZIF-8 structure containing 2-methylimidazole and azirine rings coordinated to zinc and more precisely agreed with TGA weight decomposition data than the EDS derived model.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.6b01208</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2016-07, Vol.120 (26), p.14015-14026
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_acs_jpcc_6b01208
source ACS Publications
title Kinetics of ZIF‑8 Thermal Decomposition in Inert, Oxidizing, and Reducing Environments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A13%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetics%20of%20ZIF%E2%80%918%20Thermal%20Decomposition%20in%20Inert,%20Oxidizing,%20and%20Reducing%20Environments&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=James,%20Joshua%20B&rft.date=2016-07-07&rft.volume=120&rft.issue=26&rft.spage=14015&rft.epage=14026&rft.pages=14015-14026&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.6b01208&rft_dat=%3Cacs_cross%3Eb67675480%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true