Computational Investigation and Design of Cobalt Aqua Complexes for Homogeneous Water Oxidation

We study the water oxidation mechanism of the cobalt aqua complex [Co­(H2O)6]2+ in a photocatalytic setup by means of density functional theory. Assuming a water-nucleophilic-attack or radical coupling mechanism, we investigate how the oxidation state and spin configuration change during the catalyt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2016-04, Vol.120 (15), p.7966-7975
Hauptverfasser: Schilling, Mauro, Patzke, Greta R, Hutter, Jürg, Luber, Sandra
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the water oxidation mechanism of the cobalt aqua complex [Co­(H2O)6]2+ in a photocatalytic setup by means of density functional theory. Assuming a water-nucleophilic-attack or radical coupling mechanism, we investigate how the oxidation state and spin configuration change during the catalytic cycle. In addition, different ligand environments are employed by substituting a water ligand with a halide, pyridine, or derivative thereof. This allows exploration of the effect of such ligands on the frontier orbitals and the thermodynamics of the water oxidation process. Moreover, the thermodynamically most promising water oxidation catalyst can be identified by comparing the computed free energy profiles to the one of an “ideal catalyst”. Examination of such simple (hypothetical) water oxidation catalysts provides a basis for the derivation of design guidelines, which are highly sought for the development of efficient homogeneous water oxidation catalysts.
ISSN:1932-7447
1932-7455
DOI:10.1021/acs.jpcc.6b00712