Application of the Hybridization Chain Reaction on Electrodes for the Amplified and Parallel Electrochemical Analysis of DNA

The hybridization chain reaction (HCR) is implemented for the development of amplified electrochemical DNA sensing platforms. The target analyte hybridizes with a probe oligonucleotide-functionalized electrode and triggers on the HCR process in the presence of the hairpins HA and HB. The formation o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2016-07, Vol.120 (29), p.15743-15752
Hauptverfasser: Trifonov, Alexander, Sharon, Etery, Tel-Vered, Ran, Kahn, Jason S, Willner, Itamar
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The hybridization chain reaction (HCR) is implemented for the development of amplified electrochemical DNA sensing platforms. The target analyte hybridizes with a probe oligonucleotide-functionalized electrode and triggers on the HCR process in the presence of the hairpins HA and HB. The formation of the analyte-triggered HCR chains is followed by Faradaic impedance spectroscopy or chronocoulometry using Fe­(CN)6 3–/4– or Ru­(NH3)6 3+ as redox labels, respectively. By using two different probe-functionalized electrodes and a mixture of four hairpins, HA:HB and HC:HD, the parallel analysis of two analytes is demonstrated. Through the structural design of the hairpin structures to include caged G-quadruplex subunits, the analyte/probe hybrid associated with the electrode triggers on the HCR process, leading to G-quadruplex-functionalized HCR chains. The association of hemin to the matrix yields electrocatalytic hemin/G-quadruplex units that provide a secondary amplification path for the detection of DNA through an electrocatalyzed reduction of H2O2. The system allows the detection of the analyte DNA with a detection limit corresponding to 0.2 nM.
ISSN:1932-7447
1932-7455
DOI:10.1021/acs.jpcc.5b11308