Depth-Resolved Structural and Compositional Characterization of Ion-Implanted Polystyrene that Enables Direct Covalent Immobilization of Biomolecules
A polystyrene film spun onto polished silicon substrates was implanted with argon ions using plasma immersion ion implantation (PIII) to activate its surface for single-step immobilization of biological molecules. The film was subsequently investigated by X-ray and neutron reflectometry, ultraviolet...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2015-07, Vol.119 (29), p.16793-16803 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16803 |
---|---|
container_issue | 29 |
container_start_page | 16793 |
container_title | Journal of physical chemistry. C |
container_volume | 119 |
creator | Bilek, Marcela Milena Marie Kondyurin, Alexey Dekker, Stephen Steel, Bradley Clifton Wilhelm, Richard Arthur Heller, René McKenzie, David Robert Weiss, Anthony Steven James, Michael Möller, Wolfhard |
description | A polystyrene film spun onto polished silicon substrates was implanted with argon ions using plasma immersion ion implantation (PIII) to activate its surface for single-step immobilization of biological molecules. The film was subsequently investigated by X-ray and neutron reflectometry, ultraviolet (UV)–visible (vis) and Fourier transform infrared (FTIR) ellipsometry, FTIR and Raman spectroscopy, as well as nuclear reaction analysis to determine the structural and compositional transformations associated with the surface activation. The ion irradiation resulted in a significant densification of the carbon structure, which was accompanied by hydrogen loss. The density and hydrogen profiles in the modified surface layers were found to agree with the expected depths of ion implantation as calculated by the Stopping and Range of Ions in Matter (SRIM) software. The data demonstrate that the reduction in film thickness is due to ion-induced densification rather than the removal of material by etching. Characterization by FTIR, atomic force microscopy (AFM), ellipsometry, and X-ray reflectometry shows that polystyrene films modified in this way immobilize dense layers of protein (tropoelastin) directly from solution. A substantial fraction of the immobilized protein layer remains after rigorous washing with sodium dodecyl sulfate solution, indicating that its immobilization is by covalent bonding. |
doi_str_mv | 10.1021/acs.jpcc.5b05164 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcc_5b05164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c090904803</sourcerecordid><originalsourceid>FETCH-LOGICAL-a280t-1c7ba49cd7fa6c9ca3e8821d25355bca29bc095ba4ecc94a46a5c33c3ff474803</originalsourceid><addsrcrecordid>eNp1kEtOwzAQhiMEEqWwZ-kDkGLHcZMsIS0QqRKIxzqaTBw1lRNHtlOp3IP74tIKsWE1o_-1-ILgmtEZoxG7BbSzzYA4ExUVbB6fBBOW8ShMYiFOf_84OQ8urN1QKjhlfBJ8LeTg1uGrtFptZU3enBnRjQYUgb4mue4GbVvX6t4r-RoMoJOm_YS9RHRDCt2HRTco6J2vv2i1s25nZC-JW4Mjyx4qJS1ZtEai83tbULJ3pOg6XbXqz9B9qzutJI4-fhmcNaCsvDreafDxsHzPn8LV82OR361CiFLqQoZJBXGGddLAHDMELtM0YnUkuBAVQpRVSDPhMxIxiyGeg0DOkTdNnMQp5dOAHnbRaGuNbMrBtB2YXcloucdaeqzlHmt5xOorN4fKj6NH48HY_-Pf8QOBBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Depth-Resolved Structural and Compositional Characterization of Ion-Implanted Polystyrene that Enables Direct Covalent Immobilization of Biomolecules</title><source>American Chemical Society Journals</source><creator>Bilek, Marcela Milena Marie ; Kondyurin, Alexey ; Dekker, Stephen ; Steel, Bradley Clifton ; Wilhelm, Richard Arthur ; Heller, René ; McKenzie, David Robert ; Weiss, Anthony Steven ; James, Michael ; Möller, Wolfhard</creator><creatorcontrib>Bilek, Marcela Milena Marie ; Kondyurin, Alexey ; Dekker, Stephen ; Steel, Bradley Clifton ; Wilhelm, Richard Arthur ; Heller, René ; McKenzie, David Robert ; Weiss, Anthony Steven ; James, Michael ; Möller, Wolfhard</creatorcontrib><description>A polystyrene film spun onto polished silicon substrates was implanted with argon ions using plasma immersion ion implantation (PIII) to activate its surface for single-step immobilization of biological molecules. The film was subsequently investigated by X-ray and neutron reflectometry, ultraviolet (UV)–visible (vis) and Fourier transform infrared (FTIR) ellipsometry, FTIR and Raman spectroscopy, as well as nuclear reaction analysis to determine the structural and compositional transformations associated with the surface activation. The ion irradiation resulted in a significant densification of the carbon structure, which was accompanied by hydrogen loss. The density and hydrogen profiles in the modified surface layers were found to agree with the expected depths of ion implantation as calculated by the Stopping and Range of Ions in Matter (SRIM) software. The data demonstrate that the reduction in film thickness is due to ion-induced densification rather than the removal of material by etching. Characterization by FTIR, atomic force microscopy (AFM), ellipsometry, and X-ray reflectometry shows that polystyrene films modified in this way immobilize dense layers of protein (tropoelastin) directly from solution. A substantial fraction of the immobilized protein layer remains after rigorous washing with sodium dodecyl sulfate solution, indicating that its immobilization is by covalent bonding.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.5b05164</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of physical chemistry. C, 2015-07, Vol.119 (29), p.16793-16803</ispartof><rights>Copyright © American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a280t-1c7ba49cd7fa6c9ca3e8821d25355bca29bc095ba4ecc94a46a5c33c3ff474803</citedby><cites>FETCH-LOGICAL-a280t-1c7ba49cd7fa6c9ca3e8821d25355bca29bc095ba4ecc94a46a5c33c3ff474803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.5b05164$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.5b05164$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Bilek, Marcela Milena Marie</creatorcontrib><creatorcontrib>Kondyurin, Alexey</creatorcontrib><creatorcontrib>Dekker, Stephen</creatorcontrib><creatorcontrib>Steel, Bradley Clifton</creatorcontrib><creatorcontrib>Wilhelm, Richard Arthur</creatorcontrib><creatorcontrib>Heller, René</creatorcontrib><creatorcontrib>McKenzie, David Robert</creatorcontrib><creatorcontrib>Weiss, Anthony Steven</creatorcontrib><creatorcontrib>James, Michael</creatorcontrib><creatorcontrib>Möller, Wolfhard</creatorcontrib><title>Depth-Resolved Structural and Compositional Characterization of Ion-Implanted Polystyrene that Enables Direct Covalent Immobilization of Biomolecules</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>A polystyrene film spun onto polished silicon substrates was implanted with argon ions using plasma immersion ion implantation (PIII) to activate its surface for single-step immobilization of biological molecules. The film was subsequently investigated by X-ray and neutron reflectometry, ultraviolet (UV)–visible (vis) and Fourier transform infrared (FTIR) ellipsometry, FTIR and Raman spectroscopy, as well as nuclear reaction analysis to determine the structural and compositional transformations associated with the surface activation. The ion irradiation resulted in a significant densification of the carbon structure, which was accompanied by hydrogen loss. The density and hydrogen profiles in the modified surface layers were found to agree with the expected depths of ion implantation as calculated by the Stopping and Range of Ions in Matter (SRIM) software. The data demonstrate that the reduction in film thickness is due to ion-induced densification rather than the removal of material by etching. Characterization by FTIR, atomic force microscopy (AFM), ellipsometry, and X-ray reflectometry shows that polystyrene films modified in this way immobilize dense layers of protein (tropoelastin) directly from solution. A substantial fraction of the immobilized protein layer remains after rigorous washing with sodium dodecyl sulfate solution, indicating that its immobilization is by covalent bonding.</description><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kEtOwzAQhiMEEqWwZ-kDkGLHcZMsIS0QqRKIxzqaTBw1lRNHtlOp3IP74tIKsWE1o_-1-ILgmtEZoxG7BbSzzYA4ExUVbB6fBBOW8ShMYiFOf_84OQ8urN1QKjhlfBJ8LeTg1uGrtFptZU3enBnRjQYUgb4mue4GbVvX6t4r-RoMoJOm_YS9RHRDCt2HRTco6J2vv2i1s25nZC-JW4Mjyx4qJS1ZtEai83tbULJ3pOg6XbXqz9B9qzutJI4-fhmcNaCsvDreafDxsHzPn8LV82OR361CiFLqQoZJBXGGddLAHDMELtM0YnUkuBAVQpRVSDPhMxIxiyGeg0DOkTdNnMQp5dOAHnbRaGuNbMrBtB2YXcloucdaeqzlHmt5xOorN4fKj6NH48HY_-Pf8QOBBQ</recordid><startdate>20150723</startdate><enddate>20150723</enddate><creator>Bilek, Marcela Milena Marie</creator><creator>Kondyurin, Alexey</creator><creator>Dekker, Stephen</creator><creator>Steel, Bradley Clifton</creator><creator>Wilhelm, Richard Arthur</creator><creator>Heller, René</creator><creator>McKenzie, David Robert</creator><creator>Weiss, Anthony Steven</creator><creator>James, Michael</creator><creator>Möller, Wolfhard</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150723</creationdate><title>Depth-Resolved Structural and Compositional Characterization of Ion-Implanted Polystyrene that Enables Direct Covalent Immobilization of Biomolecules</title><author>Bilek, Marcela Milena Marie ; Kondyurin, Alexey ; Dekker, Stephen ; Steel, Bradley Clifton ; Wilhelm, Richard Arthur ; Heller, René ; McKenzie, David Robert ; Weiss, Anthony Steven ; James, Michael ; Möller, Wolfhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a280t-1c7ba49cd7fa6c9ca3e8821d25355bca29bc095ba4ecc94a46a5c33c3ff474803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bilek, Marcela Milena Marie</creatorcontrib><creatorcontrib>Kondyurin, Alexey</creatorcontrib><creatorcontrib>Dekker, Stephen</creatorcontrib><creatorcontrib>Steel, Bradley Clifton</creatorcontrib><creatorcontrib>Wilhelm, Richard Arthur</creatorcontrib><creatorcontrib>Heller, René</creatorcontrib><creatorcontrib>McKenzie, David Robert</creatorcontrib><creatorcontrib>Weiss, Anthony Steven</creatorcontrib><creatorcontrib>James, Michael</creatorcontrib><creatorcontrib>Möller, Wolfhard</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bilek, Marcela Milena Marie</au><au>Kondyurin, Alexey</au><au>Dekker, Stephen</au><au>Steel, Bradley Clifton</au><au>Wilhelm, Richard Arthur</au><au>Heller, René</au><au>McKenzie, David Robert</au><au>Weiss, Anthony Steven</au><au>James, Michael</au><au>Möller, Wolfhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Depth-Resolved Structural and Compositional Characterization of Ion-Implanted Polystyrene that Enables Direct Covalent Immobilization of Biomolecules</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2015-07-23</date><risdate>2015</risdate><volume>119</volume><issue>29</issue><spage>16793</spage><epage>16803</epage><pages>16793-16803</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>A polystyrene film spun onto polished silicon substrates was implanted with argon ions using plasma immersion ion implantation (PIII) to activate its surface for single-step immobilization of biological molecules. The film was subsequently investigated by X-ray and neutron reflectometry, ultraviolet (UV)–visible (vis) and Fourier transform infrared (FTIR) ellipsometry, FTIR and Raman spectroscopy, as well as nuclear reaction analysis to determine the structural and compositional transformations associated with the surface activation. The ion irradiation resulted in a significant densification of the carbon structure, which was accompanied by hydrogen loss. The density and hydrogen profiles in the modified surface layers were found to agree with the expected depths of ion implantation as calculated by the Stopping and Range of Ions in Matter (SRIM) software. The data demonstrate that the reduction in film thickness is due to ion-induced densification rather than the removal of material by etching. Characterization by FTIR, atomic force microscopy (AFM), ellipsometry, and X-ray reflectometry shows that polystyrene films modified in this way immobilize dense layers of protein (tropoelastin) directly from solution. A substantial fraction of the immobilized protein layer remains after rigorous washing with sodium dodecyl sulfate solution, indicating that its immobilization is by covalent bonding.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.5b05164</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2015-07, Vol.119 (29), p.16793-16803 |
issn | 1932-7447 1932-7455 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acs_jpcc_5b05164 |
source | American Chemical Society Journals |
title | Depth-Resolved Structural and Compositional Characterization of Ion-Implanted Polystyrene that Enables Direct Covalent Immobilization of Biomolecules |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T10%3A45%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Depth-Resolved%20Structural%20and%20Compositional%20Characterization%20of%20Ion-Implanted%20Polystyrene%20that%20Enables%20Direct%20Covalent%20Immobilization%20of%20Biomolecules&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Bilek,%20Marcela%20Milena%20Marie&rft.date=2015-07-23&rft.volume=119&rft.issue=29&rft.spage=16793&rft.epage=16803&rft.pages=16793-16803&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.5b05164&rft_dat=%3Cacs_cross%3Ec090904803%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |