Depth-Resolved Structural and Compositional Characterization of Ion-Implanted Polystyrene that Enables Direct Covalent Immobilization of Biomolecules

A polystyrene film spun onto polished silicon substrates was implanted with argon ions using plasma immersion ion implantation (PIII) to activate its surface for single-step immobilization of biological molecules. The film was subsequently investigated by X-ray and neutron reflectometry, ultraviolet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2015-07, Vol.119 (29), p.16793-16803
Hauptverfasser: Bilek, Marcela Milena Marie, Kondyurin, Alexey, Dekker, Stephen, Steel, Bradley Clifton, Wilhelm, Richard Arthur, Heller, René, McKenzie, David Robert, Weiss, Anthony Steven, James, Michael, Möller, Wolfhard
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16803
container_issue 29
container_start_page 16793
container_title Journal of physical chemistry. C
container_volume 119
creator Bilek, Marcela Milena Marie
Kondyurin, Alexey
Dekker, Stephen
Steel, Bradley Clifton
Wilhelm, Richard Arthur
Heller, René
McKenzie, David Robert
Weiss, Anthony Steven
James, Michael
Möller, Wolfhard
description A polystyrene film spun onto polished silicon substrates was implanted with argon ions using plasma immersion ion implantation (PIII) to activate its surface for single-step immobilization of biological molecules. The film was subsequently investigated by X-ray and neutron reflectometry, ultraviolet (UV)–visible (vis) and Fourier transform infrared (FTIR) ellipsometry, FTIR and Raman spectroscopy, as well as nuclear reaction analysis to determine the structural and compositional transformations associated with the surface activation. The ion irradiation resulted in a significant densification of the carbon structure, which was accompanied by hydrogen loss. The density and hydrogen profiles in the modified surface layers were found to agree with the expected depths of ion implantation as calculated by the Stopping and Range of Ions in Matter (SRIM) software. The data demonstrate that the reduction in film thickness is due to ion-induced densification rather than the removal of material by etching. Characterization by FTIR, atomic force microscopy (AFM), ellipsometry, and X-ray reflectometry shows that polystyrene films modified in this way immobilize dense layers of protein (tropoelastin) directly from solution. A substantial fraction of the immobilized protein layer remains after rigorous washing with sodium dodecyl sulfate solution, indicating that its immobilization is by covalent bonding.
doi_str_mv 10.1021/acs.jpcc.5b05164
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcc_5b05164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c090904803</sourcerecordid><originalsourceid>FETCH-LOGICAL-a280t-1c7ba49cd7fa6c9ca3e8821d25355bca29bc095ba4ecc94a46a5c33c3ff474803</originalsourceid><addsrcrecordid>eNp1kEtOwzAQhiMEEqWwZ-kDkGLHcZMsIS0QqRKIxzqaTBw1lRNHtlOp3IP74tIKsWE1o_-1-ILgmtEZoxG7BbSzzYA4ExUVbB6fBBOW8ShMYiFOf_84OQ8urN1QKjhlfBJ8LeTg1uGrtFptZU3enBnRjQYUgb4mue4GbVvX6t4r-RoMoJOm_YS9RHRDCt2HRTco6J2vv2i1s25nZC-JW4Mjyx4qJS1ZtEai83tbULJ3pOg6XbXqz9B9qzutJI4-fhmcNaCsvDreafDxsHzPn8LV82OR361CiFLqQoZJBXGGddLAHDMELtM0YnUkuBAVQpRVSDPhMxIxiyGeg0DOkTdNnMQp5dOAHnbRaGuNbMrBtB2YXcloucdaeqzlHmt5xOorN4fKj6NH48HY_-Pf8QOBBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Depth-Resolved Structural and Compositional Characterization of Ion-Implanted Polystyrene that Enables Direct Covalent Immobilization of Biomolecules</title><source>American Chemical Society Journals</source><creator>Bilek, Marcela Milena Marie ; Kondyurin, Alexey ; Dekker, Stephen ; Steel, Bradley Clifton ; Wilhelm, Richard Arthur ; Heller, René ; McKenzie, David Robert ; Weiss, Anthony Steven ; James, Michael ; Möller, Wolfhard</creator><creatorcontrib>Bilek, Marcela Milena Marie ; Kondyurin, Alexey ; Dekker, Stephen ; Steel, Bradley Clifton ; Wilhelm, Richard Arthur ; Heller, René ; McKenzie, David Robert ; Weiss, Anthony Steven ; James, Michael ; Möller, Wolfhard</creatorcontrib><description>A polystyrene film spun onto polished silicon substrates was implanted with argon ions using plasma immersion ion implantation (PIII) to activate its surface for single-step immobilization of biological molecules. The film was subsequently investigated by X-ray and neutron reflectometry, ultraviolet (UV)–visible (vis) and Fourier transform infrared (FTIR) ellipsometry, FTIR and Raman spectroscopy, as well as nuclear reaction analysis to determine the structural and compositional transformations associated with the surface activation. The ion irradiation resulted in a significant densification of the carbon structure, which was accompanied by hydrogen loss. The density and hydrogen profiles in the modified surface layers were found to agree with the expected depths of ion implantation as calculated by the Stopping and Range of Ions in Matter (SRIM) software. The data demonstrate that the reduction in film thickness is due to ion-induced densification rather than the removal of material by etching. Characterization by FTIR, atomic force microscopy (AFM), ellipsometry, and X-ray reflectometry shows that polystyrene films modified in this way immobilize dense layers of protein (tropoelastin) directly from solution. A substantial fraction of the immobilized protein layer remains after rigorous washing with sodium dodecyl sulfate solution, indicating that its immobilization is by covalent bonding.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.5b05164</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of physical chemistry. C, 2015-07, Vol.119 (29), p.16793-16803</ispartof><rights>Copyright © American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a280t-1c7ba49cd7fa6c9ca3e8821d25355bca29bc095ba4ecc94a46a5c33c3ff474803</citedby><cites>FETCH-LOGICAL-a280t-1c7ba49cd7fa6c9ca3e8821d25355bca29bc095ba4ecc94a46a5c33c3ff474803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.5b05164$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.5b05164$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Bilek, Marcela Milena Marie</creatorcontrib><creatorcontrib>Kondyurin, Alexey</creatorcontrib><creatorcontrib>Dekker, Stephen</creatorcontrib><creatorcontrib>Steel, Bradley Clifton</creatorcontrib><creatorcontrib>Wilhelm, Richard Arthur</creatorcontrib><creatorcontrib>Heller, René</creatorcontrib><creatorcontrib>McKenzie, David Robert</creatorcontrib><creatorcontrib>Weiss, Anthony Steven</creatorcontrib><creatorcontrib>James, Michael</creatorcontrib><creatorcontrib>Möller, Wolfhard</creatorcontrib><title>Depth-Resolved Structural and Compositional Characterization of Ion-Implanted Polystyrene that Enables Direct Covalent Immobilization of Biomolecules</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>A polystyrene film spun onto polished silicon substrates was implanted with argon ions using plasma immersion ion implantation (PIII) to activate its surface for single-step immobilization of biological molecules. The film was subsequently investigated by X-ray and neutron reflectometry, ultraviolet (UV)–visible (vis) and Fourier transform infrared (FTIR) ellipsometry, FTIR and Raman spectroscopy, as well as nuclear reaction analysis to determine the structural and compositional transformations associated with the surface activation. The ion irradiation resulted in a significant densification of the carbon structure, which was accompanied by hydrogen loss. The density and hydrogen profiles in the modified surface layers were found to agree with the expected depths of ion implantation as calculated by the Stopping and Range of Ions in Matter (SRIM) software. The data demonstrate that the reduction in film thickness is due to ion-induced densification rather than the removal of material by etching. Characterization by FTIR, atomic force microscopy (AFM), ellipsometry, and X-ray reflectometry shows that polystyrene films modified in this way immobilize dense layers of protein (tropoelastin) directly from solution. A substantial fraction of the immobilized protein layer remains after rigorous washing with sodium dodecyl sulfate solution, indicating that its immobilization is by covalent bonding.</description><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kEtOwzAQhiMEEqWwZ-kDkGLHcZMsIS0QqRKIxzqaTBw1lRNHtlOp3IP74tIKsWE1o_-1-ILgmtEZoxG7BbSzzYA4ExUVbB6fBBOW8ShMYiFOf_84OQ8urN1QKjhlfBJ8LeTg1uGrtFptZU3enBnRjQYUgb4mue4GbVvX6t4r-RoMoJOm_YS9RHRDCt2HRTco6J2vv2i1s25nZC-JW4Mjyx4qJS1ZtEai83tbULJ3pOg6XbXqz9B9qzutJI4-fhmcNaCsvDreafDxsHzPn8LV82OR361CiFLqQoZJBXGGddLAHDMELtM0YnUkuBAVQpRVSDPhMxIxiyGeg0DOkTdNnMQp5dOAHnbRaGuNbMrBtB2YXcloucdaeqzlHmt5xOorN4fKj6NH48HY_-Pf8QOBBQ</recordid><startdate>20150723</startdate><enddate>20150723</enddate><creator>Bilek, Marcela Milena Marie</creator><creator>Kondyurin, Alexey</creator><creator>Dekker, Stephen</creator><creator>Steel, Bradley Clifton</creator><creator>Wilhelm, Richard Arthur</creator><creator>Heller, René</creator><creator>McKenzie, David Robert</creator><creator>Weiss, Anthony Steven</creator><creator>James, Michael</creator><creator>Möller, Wolfhard</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150723</creationdate><title>Depth-Resolved Structural and Compositional Characterization of Ion-Implanted Polystyrene that Enables Direct Covalent Immobilization of Biomolecules</title><author>Bilek, Marcela Milena Marie ; Kondyurin, Alexey ; Dekker, Stephen ; Steel, Bradley Clifton ; Wilhelm, Richard Arthur ; Heller, René ; McKenzie, David Robert ; Weiss, Anthony Steven ; James, Michael ; Möller, Wolfhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a280t-1c7ba49cd7fa6c9ca3e8821d25355bca29bc095ba4ecc94a46a5c33c3ff474803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bilek, Marcela Milena Marie</creatorcontrib><creatorcontrib>Kondyurin, Alexey</creatorcontrib><creatorcontrib>Dekker, Stephen</creatorcontrib><creatorcontrib>Steel, Bradley Clifton</creatorcontrib><creatorcontrib>Wilhelm, Richard Arthur</creatorcontrib><creatorcontrib>Heller, René</creatorcontrib><creatorcontrib>McKenzie, David Robert</creatorcontrib><creatorcontrib>Weiss, Anthony Steven</creatorcontrib><creatorcontrib>James, Michael</creatorcontrib><creatorcontrib>Möller, Wolfhard</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bilek, Marcela Milena Marie</au><au>Kondyurin, Alexey</au><au>Dekker, Stephen</au><au>Steel, Bradley Clifton</au><au>Wilhelm, Richard Arthur</au><au>Heller, René</au><au>McKenzie, David Robert</au><au>Weiss, Anthony Steven</au><au>James, Michael</au><au>Möller, Wolfhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Depth-Resolved Structural and Compositional Characterization of Ion-Implanted Polystyrene that Enables Direct Covalent Immobilization of Biomolecules</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2015-07-23</date><risdate>2015</risdate><volume>119</volume><issue>29</issue><spage>16793</spage><epage>16803</epage><pages>16793-16803</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>A polystyrene film spun onto polished silicon substrates was implanted with argon ions using plasma immersion ion implantation (PIII) to activate its surface for single-step immobilization of biological molecules. The film was subsequently investigated by X-ray and neutron reflectometry, ultraviolet (UV)–visible (vis) and Fourier transform infrared (FTIR) ellipsometry, FTIR and Raman spectroscopy, as well as nuclear reaction analysis to determine the structural and compositional transformations associated with the surface activation. The ion irradiation resulted in a significant densification of the carbon structure, which was accompanied by hydrogen loss. The density and hydrogen profiles in the modified surface layers were found to agree with the expected depths of ion implantation as calculated by the Stopping and Range of Ions in Matter (SRIM) software. The data demonstrate that the reduction in film thickness is due to ion-induced densification rather than the removal of material by etching. Characterization by FTIR, atomic force microscopy (AFM), ellipsometry, and X-ray reflectometry shows that polystyrene films modified in this way immobilize dense layers of protein (tropoelastin) directly from solution. A substantial fraction of the immobilized protein layer remains after rigorous washing with sodium dodecyl sulfate solution, indicating that its immobilization is by covalent bonding.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.5b05164</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2015-07, Vol.119 (29), p.16793-16803
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_acs_jpcc_5b05164
source American Chemical Society Journals
title Depth-Resolved Structural and Compositional Characterization of Ion-Implanted Polystyrene that Enables Direct Covalent Immobilization of Biomolecules
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T10%3A45%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Depth-Resolved%20Structural%20and%20Compositional%20Characterization%20of%20Ion-Implanted%20Polystyrene%20that%20Enables%20Direct%20Covalent%20Immobilization%20of%20Biomolecules&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Bilek,%20Marcela%20Milena%20Marie&rft.date=2015-07-23&rft.volume=119&rft.issue=29&rft.spage=16793&rft.epage=16803&rft.pages=16793-16803&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.5b05164&rft_dat=%3Cacs_cross%3Ec090904803%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true