A Single Picture Explains Diversity of Hyperthermia Response of Magnetic Nanoparticles

Progress in the design of nanoscale magnets for localized hyperthermia cancer therapy has been largely driven by trial-and-error approaches, for instance, by changing of the stoichiometry composition, size, and shape of the magnetic entities. So far, widely different and often conflicting heat dissi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2015-07, Vol.119 (27), p.15698-15706
Hauptverfasser: Conde-Leboran, Ivan, Baldomir, Daniel, Martinez-Boubeta, Carlos, Chubykalo-Fesenko, Oksana, del Puerto Morales, María, Salas, Gorka, Cabrera, David, Camarero, Julio, Teran, Francisco J, Serantes, David
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15706
container_issue 27
container_start_page 15698
container_title Journal of physical chemistry. C
container_volume 119
creator Conde-Leboran, Ivan
Baldomir, Daniel
Martinez-Boubeta, Carlos
Chubykalo-Fesenko, Oksana
del Puerto Morales, María
Salas, Gorka
Cabrera, David
Camarero, Julio
Teran, Francisco J
Serantes, David
description Progress in the design of nanoscale magnets for localized hyperthermia cancer therapy has been largely driven by trial-and-error approaches, for instance, by changing of the stoichiometry composition, size, and shape of the magnetic entities. So far, widely different and often conflicting heat dissipation results have been reported, particularly as a function of the nanoparticle concentration. Thus, achieving hyperthermia-efficient magnetic ferrofluids remains an outstanding challenge. Here we demonstrate that diverging heat-dissipation patterns found in the literature can be actually described by a single picture accounting for both the intrinsic magnetic features of the particles (anisotropy, magnetization) and experimental conditions (concentration, magnetic field). Importantly, this general magnetic-hyperthermia scenario also predicts a novel non-monotonic concentration dependence with optimum heating features, which we experimentally confirmed in iron oxide nanoparticle ferrofluids by fine-tuning the particle size. Overall, our approach implies a magnetic hyperthermia trilemma that may constitute a simple strategy for development of magnetic nanomaterials for optimal hyperthermia efficiency.
doi_str_mv 10.1021/acs.jpcc.5b02555
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcc_5b02555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a289217607</sourcerecordid><originalsourceid>FETCH-LOGICAL-a346t-2290393a545896f0afe085efcedc5309c888ee3586ec071502fda708ef7cf84d3</originalsourceid><addsrcrecordid>eNp1kEtPwzAQhC0EEqVw5-gfQMrajhPnWJXSIpWHeF0j46yLqzSJ7BSRf09CK26cdqSZWY0-Qi4ZTBhwdq1NmGwaYybyA7iU8oiMWCZ4lMZSHv_pOD0lZyFsAKQAJkbkfUpfXLUukT450-480vl3U2pXBXrjvtAH13a0tnTZNejbT_Rbp-kzhqauAg7GvV5X2DpDH3RVN9r3ssRwTk6sLgNeHO6YvN3OX2fLaPW4uJtNV5EWcdJGnGcgMqFlLFWWWNAWQUm0BgvTD8yMUgpRSJWggZRJ4LbQKSi0qbEqLsSYwP6v8XUIHm3eeLfVvssZ5AOXvOeSD1zyA5e-crWv_Dr1zlf9wP_jP5piZ-k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Single Picture Explains Diversity of Hyperthermia Response of Magnetic Nanoparticles</title><source>ACS Publications</source><creator>Conde-Leboran, Ivan ; Baldomir, Daniel ; Martinez-Boubeta, Carlos ; Chubykalo-Fesenko, Oksana ; del Puerto Morales, María ; Salas, Gorka ; Cabrera, David ; Camarero, Julio ; Teran, Francisco J ; Serantes, David</creator><creatorcontrib>Conde-Leboran, Ivan ; Baldomir, Daniel ; Martinez-Boubeta, Carlos ; Chubykalo-Fesenko, Oksana ; del Puerto Morales, María ; Salas, Gorka ; Cabrera, David ; Camarero, Julio ; Teran, Francisco J ; Serantes, David</creatorcontrib><description>Progress in the design of nanoscale magnets for localized hyperthermia cancer therapy has been largely driven by trial-and-error approaches, for instance, by changing of the stoichiometry composition, size, and shape of the magnetic entities. So far, widely different and often conflicting heat dissipation results have been reported, particularly as a function of the nanoparticle concentration. Thus, achieving hyperthermia-efficient magnetic ferrofluids remains an outstanding challenge. Here we demonstrate that diverging heat-dissipation patterns found in the literature can be actually described by a single picture accounting for both the intrinsic magnetic features of the particles (anisotropy, magnetization) and experimental conditions (concentration, magnetic field). Importantly, this general magnetic-hyperthermia scenario also predicts a novel non-monotonic concentration dependence with optimum heating features, which we experimentally confirmed in iron oxide nanoparticle ferrofluids by fine-tuning the particle size. Overall, our approach implies a magnetic hyperthermia trilemma that may constitute a simple strategy for development of magnetic nanomaterials for optimal hyperthermia efficiency.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.5b02555</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of physical chemistry. C, 2015-07, Vol.119 (27), p.15698-15706</ispartof><rights>Copyright © American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a346t-2290393a545896f0afe085efcedc5309c888ee3586ec071502fda708ef7cf84d3</citedby><cites>FETCH-LOGICAL-a346t-2290393a545896f0afe085efcedc5309c888ee3586ec071502fda708ef7cf84d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.5b02555$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.5b02555$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,782,786,2767,27083,27931,27932,56745,56795</link.rule.ids></links><search><creatorcontrib>Conde-Leboran, Ivan</creatorcontrib><creatorcontrib>Baldomir, Daniel</creatorcontrib><creatorcontrib>Martinez-Boubeta, Carlos</creatorcontrib><creatorcontrib>Chubykalo-Fesenko, Oksana</creatorcontrib><creatorcontrib>del Puerto Morales, María</creatorcontrib><creatorcontrib>Salas, Gorka</creatorcontrib><creatorcontrib>Cabrera, David</creatorcontrib><creatorcontrib>Camarero, Julio</creatorcontrib><creatorcontrib>Teran, Francisco J</creatorcontrib><creatorcontrib>Serantes, David</creatorcontrib><title>A Single Picture Explains Diversity of Hyperthermia Response of Magnetic Nanoparticles</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Progress in the design of nanoscale magnets for localized hyperthermia cancer therapy has been largely driven by trial-and-error approaches, for instance, by changing of the stoichiometry composition, size, and shape of the magnetic entities. So far, widely different and often conflicting heat dissipation results have been reported, particularly as a function of the nanoparticle concentration. Thus, achieving hyperthermia-efficient magnetic ferrofluids remains an outstanding challenge. Here we demonstrate that diverging heat-dissipation patterns found in the literature can be actually described by a single picture accounting for both the intrinsic magnetic features of the particles (anisotropy, magnetization) and experimental conditions (concentration, magnetic field). Importantly, this general magnetic-hyperthermia scenario also predicts a novel non-monotonic concentration dependence with optimum heating features, which we experimentally confirmed in iron oxide nanoparticle ferrofluids by fine-tuning the particle size. Overall, our approach implies a magnetic hyperthermia trilemma that may constitute a simple strategy for development of magnetic nanomaterials for optimal hyperthermia efficiency.</description><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kEtPwzAQhC0EEqVw5-gfQMrajhPnWJXSIpWHeF0j46yLqzSJ7BSRf09CK26cdqSZWY0-Qi4ZTBhwdq1NmGwaYybyA7iU8oiMWCZ4lMZSHv_pOD0lZyFsAKQAJkbkfUpfXLUukT450-480vl3U2pXBXrjvtAH13a0tnTZNejbT_Rbp-kzhqauAg7GvV5X2DpDH3RVN9r3ssRwTk6sLgNeHO6YvN3OX2fLaPW4uJtNV5EWcdJGnGcgMqFlLFWWWNAWQUm0BgvTD8yMUgpRSJWggZRJ4LbQKSi0qbEqLsSYwP6v8XUIHm3eeLfVvssZ5AOXvOeSD1zyA5e-crWv_Dr1zlf9wP_jP5piZ-k</recordid><startdate>20150709</startdate><enddate>20150709</enddate><creator>Conde-Leboran, Ivan</creator><creator>Baldomir, Daniel</creator><creator>Martinez-Boubeta, Carlos</creator><creator>Chubykalo-Fesenko, Oksana</creator><creator>del Puerto Morales, María</creator><creator>Salas, Gorka</creator><creator>Cabrera, David</creator><creator>Camarero, Julio</creator><creator>Teran, Francisco J</creator><creator>Serantes, David</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150709</creationdate><title>A Single Picture Explains Diversity of Hyperthermia Response of Magnetic Nanoparticles</title><author>Conde-Leboran, Ivan ; Baldomir, Daniel ; Martinez-Boubeta, Carlos ; Chubykalo-Fesenko, Oksana ; del Puerto Morales, María ; Salas, Gorka ; Cabrera, David ; Camarero, Julio ; Teran, Francisco J ; Serantes, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a346t-2290393a545896f0afe085efcedc5309c888ee3586ec071502fda708ef7cf84d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Conde-Leboran, Ivan</creatorcontrib><creatorcontrib>Baldomir, Daniel</creatorcontrib><creatorcontrib>Martinez-Boubeta, Carlos</creatorcontrib><creatorcontrib>Chubykalo-Fesenko, Oksana</creatorcontrib><creatorcontrib>del Puerto Morales, María</creatorcontrib><creatorcontrib>Salas, Gorka</creatorcontrib><creatorcontrib>Cabrera, David</creatorcontrib><creatorcontrib>Camarero, Julio</creatorcontrib><creatorcontrib>Teran, Francisco J</creatorcontrib><creatorcontrib>Serantes, David</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Conde-Leboran, Ivan</au><au>Baldomir, Daniel</au><au>Martinez-Boubeta, Carlos</au><au>Chubykalo-Fesenko, Oksana</au><au>del Puerto Morales, María</au><au>Salas, Gorka</au><au>Cabrera, David</au><au>Camarero, Julio</au><au>Teran, Francisco J</au><au>Serantes, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Single Picture Explains Diversity of Hyperthermia Response of Magnetic Nanoparticles</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2015-07-09</date><risdate>2015</risdate><volume>119</volume><issue>27</issue><spage>15698</spage><epage>15706</epage><pages>15698-15706</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Progress in the design of nanoscale magnets for localized hyperthermia cancer therapy has been largely driven by trial-and-error approaches, for instance, by changing of the stoichiometry composition, size, and shape of the magnetic entities. So far, widely different and often conflicting heat dissipation results have been reported, particularly as a function of the nanoparticle concentration. Thus, achieving hyperthermia-efficient magnetic ferrofluids remains an outstanding challenge. Here we demonstrate that diverging heat-dissipation patterns found in the literature can be actually described by a single picture accounting for both the intrinsic magnetic features of the particles (anisotropy, magnetization) and experimental conditions (concentration, magnetic field). Importantly, this general magnetic-hyperthermia scenario also predicts a novel non-monotonic concentration dependence with optimum heating features, which we experimentally confirmed in iron oxide nanoparticle ferrofluids by fine-tuning the particle size. Overall, our approach implies a magnetic hyperthermia trilemma that may constitute a simple strategy for development of magnetic nanomaterials for optimal hyperthermia efficiency.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.5b02555</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2015-07, Vol.119 (27), p.15698-15706
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_acs_jpcc_5b02555
source ACS Publications
title A Single Picture Explains Diversity of Hyperthermia Response of Magnetic Nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T02%3A37%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Single%20Picture%20Explains%20Diversity%20of%20Hyperthermia%20Response%20of%20Magnetic%20Nanoparticles&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Conde-Leboran,%20Ivan&rft.date=2015-07-09&rft.volume=119&rft.issue=27&rft.spage=15698&rft.epage=15706&rft.pages=15698-15706&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.5b02555&rft_dat=%3Cacs_cross%3Ea289217607%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true