A Single Picture Explains Diversity of Hyperthermia Response of Magnetic Nanoparticles
Progress in the design of nanoscale magnets for localized hyperthermia cancer therapy has been largely driven by trial-and-error approaches, for instance, by changing of the stoichiometry composition, size, and shape of the magnetic entities. So far, widely different and often conflicting heat dissi...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2015-07, Vol.119 (27), p.15698-15706 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15706 |
---|---|
container_issue | 27 |
container_start_page | 15698 |
container_title | Journal of physical chemistry. C |
container_volume | 119 |
creator | Conde-Leboran, Ivan Baldomir, Daniel Martinez-Boubeta, Carlos Chubykalo-Fesenko, Oksana del Puerto Morales, María Salas, Gorka Cabrera, David Camarero, Julio Teran, Francisco J Serantes, David |
description | Progress in the design of nanoscale magnets for localized hyperthermia cancer therapy has been largely driven by trial-and-error approaches, for instance, by changing of the stoichiometry composition, size, and shape of the magnetic entities. So far, widely different and often conflicting heat dissipation results have been reported, particularly as a function of the nanoparticle concentration. Thus, achieving hyperthermia-efficient magnetic ferrofluids remains an outstanding challenge. Here we demonstrate that diverging heat-dissipation patterns found in the literature can be actually described by a single picture accounting for both the intrinsic magnetic features of the particles (anisotropy, magnetization) and experimental conditions (concentration, magnetic field). Importantly, this general magnetic-hyperthermia scenario also predicts a novel non-monotonic concentration dependence with optimum heating features, which we experimentally confirmed in iron oxide nanoparticle ferrofluids by fine-tuning the particle size. Overall, our approach implies a magnetic hyperthermia trilemma that may constitute a simple strategy for development of magnetic nanomaterials for optimal hyperthermia efficiency. |
doi_str_mv | 10.1021/acs.jpcc.5b02555 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcc_5b02555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a289217607</sourcerecordid><originalsourceid>FETCH-LOGICAL-a346t-2290393a545896f0afe085efcedc5309c888ee3586ec071502fda708ef7cf84d3</originalsourceid><addsrcrecordid>eNp1kEtPwzAQhC0EEqVw5-gfQMrajhPnWJXSIpWHeF0j46yLqzSJ7BSRf09CK26cdqSZWY0-Qi4ZTBhwdq1NmGwaYybyA7iU8oiMWCZ4lMZSHv_pOD0lZyFsAKQAJkbkfUpfXLUukT450-480vl3U2pXBXrjvtAH13a0tnTZNejbT_Rbp-kzhqauAg7GvV5X2DpDH3RVN9r3ssRwTk6sLgNeHO6YvN3OX2fLaPW4uJtNV5EWcdJGnGcgMqFlLFWWWNAWQUm0BgvTD8yMUgpRSJWggZRJ4LbQKSi0qbEqLsSYwP6v8XUIHm3eeLfVvssZ5AOXvOeSD1zyA5e-crWv_Dr1zlf9wP_jP5piZ-k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Single Picture Explains Diversity of Hyperthermia Response of Magnetic Nanoparticles</title><source>ACS Publications</source><creator>Conde-Leboran, Ivan ; Baldomir, Daniel ; Martinez-Boubeta, Carlos ; Chubykalo-Fesenko, Oksana ; del Puerto Morales, María ; Salas, Gorka ; Cabrera, David ; Camarero, Julio ; Teran, Francisco J ; Serantes, David</creator><creatorcontrib>Conde-Leboran, Ivan ; Baldomir, Daniel ; Martinez-Boubeta, Carlos ; Chubykalo-Fesenko, Oksana ; del Puerto Morales, María ; Salas, Gorka ; Cabrera, David ; Camarero, Julio ; Teran, Francisco J ; Serantes, David</creatorcontrib><description>Progress in the design of nanoscale magnets for localized hyperthermia cancer therapy has been largely driven by trial-and-error approaches, for instance, by changing of the stoichiometry composition, size, and shape of the magnetic entities. So far, widely different and often conflicting heat dissipation results have been reported, particularly as a function of the nanoparticle concentration. Thus, achieving hyperthermia-efficient magnetic ferrofluids remains an outstanding challenge. Here we demonstrate that diverging heat-dissipation patterns found in the literature can be actually described by a single picture accounting for both the intrinsic magnetic features of the particles (anisotropy, magnetization) and experimental conditions (concentration, magnetic field). Importantly, this general magnetic-hyperthermia scenario also predicts a novel non-monotonic concentration dependence with optimum heating features, which we experimentally confirmed in iron oxide nanoparticle ferrofluids by fine-tuning the particle size. Overall, our approach implies a magnetic hyperthermia trilemma that may constitute a simple strategy for development of magnetic nanomaterials for optimal hyperthermia efficiency.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.5b02555</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of physical chemistry. C, 2015-07, Vol.119 (27), p.15698-15706</ispartof><rights>Copyright © American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a346t-2290393a545896f0afe085efcedc5309c888ee3586ec071502fda708ef7cf84d3</citedby><cites>FETCH-LOGICAL-a346t-2290393a545896f0afe085efcedc5309c888ee3586ec071502fda708ef7cf84d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.5b02555$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.5b02555$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,782,786,2767,27083,27931,27932,56745,56795</link.rule.ids></links><search><creatorcontrib>Conde-Leboran, Ivan</creatorcontrib><creatorcontrib>Baldomir, Daniel</creatorcontrib><creatorcontrib>Martinez-Boubeta, Carlos</creatorcontrib><creatorcontrib>Chubykalo-Fesenko, Oksana</creatorcontrib><creatorcontrib>del Puerto Morales, María</creatorcontrib><creatorcontrib>Salas, Gorka</creatorcontrib><creatorcontrib>Cabrera, David</creatorcontrib><creatorcontrib>Camarero, Julio</creatorcontrib><creatorcontrib>Teran, Francisco J</creatorcontrib><creatorcontrib>Serantes, David</creatorcontrib><title>A Single Picture Explains Diversity of Hyperthermia Response of Magnetic Nanoparticles</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Progress in the design of nanoscale magnets for localized hyperthermia cancer therapy has been largely driven by trial-and-error approaches, for instance, by changing of the stoichiometry composition, size, and shape of the magnetic entities. So far, widely different and often conflicting heat dissipation results have been reported, particularly as a function of the nanoparticle concentration. Thus, achieving hyperthermia-efficient magnetic ferrofluids remains an outstanding challenge. Here we demonstrate that diverging heat-dissipation patterns found in the literature can be actually described by a single picture accounting for both the intrinsic magnetic features of the particles (anisotropy, magnetization) and experimental conditions (concentration, magnetic field). Importantly, this general magnetic-hyperthermia scenario also predicts a novel non-monotonic concentration dependence with optimum heating features, which we experimentally confirmed in iron oxide nanoparticle ferrofluids by fine-tuning the particle size. Overall, our approach implies a magnetic hyperthermia trilemma that may constitute a simple strategy for development of magnetic nanomaterials for optimal hyperthermia efficiency.</description><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kEtPwzAQhC0EEqVw5-gfQMrajhPnWJXSIpWHeF0j46yLqzSJ7BSRf09CK26cdqSZWY0-Qi4ZTBhwdq1NmGwaYybyA7iU8oiMWCZ4lMZSHv_pOD0lZyFsAKQAJkbkfUpfXLUukT450-480vl3U2pXBXrjvtAH13a0tnTZNejbT_Rbp-kzhqauAg7GvV5X2DpDH3RVN9r3ssRwTk6sLgNeHO6YvN3OX2fLaPW4uJtNV5EWcdJGnGcgMqFlLFWWWNAWQUm0BgvTD8yMUgpRSJWggZRJ4LbQKSi0qbEqLsSYwP6v8XUIHm3eeLfVvssZ5AOXvOeSD1zyA5e-crWv_Dr1zlf9wP_jP5piZ-k</recordid><startdate>20150709</startdate><enddate>20150709</enddate><creator>Conde-Leboran, Ivan</creator><creator>Baldomir, Daniel</creator><creator>Martinez-Boubeta, Carlos</creator><creator>Chubykalo-Fesenko, Oksana</creator><creator>del Puerto Morales, María</creator><creator>Salas, Gorka</creator><creator>Cabrera, David</creator><creator>Camarero, Julio</creator><creator>Teran, Francisco J</creator><creator>Serantes, David</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150709</creationdate><title>A Single Picture Explains Diversity of Hyperthermia Response of Magnetic Nanoparticles</title><author>Conde-Leboran, Ivan ; Baldomir, Daniel ; Martinez-Boubeta, Carlos ; Chubykalo-Fesenko, Oksana ; del Puerto Morales, María ; Salas, Gorka ; Cabrera, David ; Camarero, Julio ; Teran, Francisco J ; Serantes, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a346t-2290393a545896f0afe085efcedc5309c888ee3586ec071502fda708ef7cf84d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Conde-Leboran, Ivan</creatorcontrib><creatorcontrib>Baldomir, Daniel</creatorcontrib><creatorcontrib>Martinez-Boubeta, Carlos</creatorcontrib><creatorcontrib>Chubykalo-Fesenko, Oksana</creatorcontrib><creatorcontrib>del Puerto Morales, María</creatorcontrib><creatorcontrib>Salas, Gorka</creatorcontrib><creatorcontrib>Cabrera, David</creatorcontrib><creatorcontrib>Camarero, Julio</creatorcontrib><creatorcontrib>Teran, Francisco J</creatorcontrib><creatorcontrib>Serantes, David</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Conde-Leboran, Ivan</au><au>Baldomir, Daniel</au><au>Martinez-Boubeta, Carlos</au><au>Chubykalo-Fesenko, Oksana</au><au>del Puerto Morales, María</au><au>Salas, Gorka</au><au>Cabrera, David</au><au>Camarero, Julio</au><au>Teran, Francisco J</au><au>Serantes, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Single Picture Explains Diversity of Hyperthermia Response of Magnetic Nanoparticles</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2015-07-09</date><risdate>2015</risdate><volume>119</volume><issue>27</issue><spage>15698</spage><epage>15706</epage><pages>15698-15706</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Progress in the design of nanoscale magnets for localized hyperthermia cancer therapy has been largely driven by trial-and-error approaches, for instance, by changing of the stoichiometry composition, size, and shape of the magnetic entities. So far, widely different and often conflicting heat dissipation results have been reported, particularly as a function of the nanoparticle concentration. Thus, achieving hyperthermia-efficient magnetic ferrofluids remains an outstanding challenge. Here we demonstrate that diverging heat-dissipation patterns found in the literature can be actually described by a single picture accounting for both the intrinsic magnetic features of the particles (anisotropy, magnetization) and experimental conditions (concentration, magnetic field). Importantly, this general magnetic-hyperthermia scenario also predicts a novel non-monotonic concentration dependence with optimum heating features, which we experimentally confirmed in iron oxide nanoparticle ferrofluids by fine-tuning the particle size. Overall, our approach implies a magnetic hyperthermia trilemma that may constitute a simple strategy for development of magnetic nanomaterials for optimal hyperthermia efficiency.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.5b02555</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2015-07, Vol.119 (27), p.15698-15706 |
issn | 1932-7447 1932-7455 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acs_jpcc_5b02555 |
source | ACS Publications |
title | A Single Picture Explains Diversity of Hyperthermia Response of Magnetic Nanoparticles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T02%3A37%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Single%20Picture%20Explains%20Diversity%20of%20Hyperthermia%20Response%20of%20Magnetic%20Nanoparticles&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Conde-Leboran,%20Ivan&rft.date=2015-07-09&rft.volume=119&rft.issue=27&rft.spage=15698&rft.epage=15706&rft.pages=15698-15706&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.5b02555&rft_dat=%3Cacs_cross%3Ea289217607%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |