Nonresonant Exciton–Plasmon Interaction in Metal–Chalcogenide (Cu x S)/Perovskite (CsPbBr3) Based Colloidal Heterostructure
Heterostructures often exploit exciton–plasmon coupling between two materials to enhance various optical properties, where an essential criterion is the resonant energy coupling between the two materials. Recently, however, it is shown that nonresonant exciton–plasmon interaction can take place in a...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2023-08, Vol.127 (31), p.15353-15362 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15362 |
---|---|
container_issue | 31 |
container_start_page | 15353 |
container_title | Journal of physical chemistry. C |
container_volume | 127 |
creator | Chakraborty, Saptarshi Dash, Gauttam Mannar, Subhashri Maurya, Krishna Chand Das, Arpan Narasimhan, Shobhana Saha, Bivas Viswanatha, Ranjani |
description | Heterostructures often exploit exciton–plasmon coupling between two materials to enhance various optical properties, where an essential criterion is the resonant energy coupling between the two materials. Recently, however, it is shown that nonresonant exciton–plasmon interaction can take place in a single semiconductor plasmonic nanomaterial, where the plasmonic and excitonic absorptions share no energy overlap. Here, we design a colloidal heterostructure composed of plasmonic Cu x S and excitonic CsPbBr3, without any spectral overlap to study the nonresonant interaction across two different materials. The heterostructure shows different structural and optical properties such as a strained interface between the two parent components, higher Urbach energy compared to perovskite, and photoluminescence quenching that suggests possible interaction, and its magnetic circular dichroism properties show a clear signature of strong nonresonant exciton–plasmon interaction. To the best of our knowledge, this is the first demonstration of nonresonant exciton–plasmon interaction that can open new possibilities in plasmontronics. |
doi_str_mv | 10.1021/acs.jpcc.3c03331 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcc_3c03331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>h62094876</sourcerecordid><originalsourceid>FETCH-LOGICAL-a322t-91a811455e694d5ae2c77f4615558b9703cf3b2d572284b405cd0e7eb2ee00d63</originalsourceid><addsrcrecordid>eNp1UMtOwzAQtBBIlMKdo49UIq0fcdMcaVRopQKVgHPkOBtISe3KdlA5wT_wh3wJLq24cdrRzs7s7iB0TkmfEkYHUrn-cq1UnyvCOacHqENTzqIkFuLwD8fJMTpxbkmI4ITyDvq4M9qCM1pqjycbVXujvz-_Fo10K6PxTHuwUvk64FrjW_CyCXT2IhtlnkHXJeCLrMUb_NAbLMCaN_da-23PLYqx5T08lg5KnJmmMXUpGzyF4Gict63yrYVTdFTJxsHZvnbR0_XkMZtG8_ubWXY1jyRnzEcplSNKwyswTONSSGAqSap4SIUQoyJNCFcVL1gpEsZGcREToUoCCRQMgJByyLuI7HxVWO4sVPna1itp33NK8m2AeQgw3waY7wMMksud5JcxrdXhwP_HfwAkGndG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nonresonant Exciton–Plasmon Interaction in Metal–Chalcogenide (Cu x S)/Perovskite (CsPbBr3) Based Colloidal Heterostructure</title><source>ACS Publications</source><creator>Chakraborty, Saptarshi ; Dash, Gauttam ; Mannar, Subhashri ; Maurya, Krishna Chand ; Das, Arpan ; Narasimhan, Shobhana ; Saha, Bivas ; Viswanatha, Ranjani</creator><creatorcontrib>Chakraborty, Saptarshi ; Dash, Gauttam ; Mannar, Subhashri ; Maurya, Krishna Chand ; Das, Arpan ; Narasimhan, Shobhana ; Saha, Bivas ; Viswanatha, Ranjani</creatorcontrib><description>Heterostructures often exploit exciton–plasmon coupling between two materials to enhance various optical properties, where an essential criterion is the resonant energy coupling between the two materials. Recently, however, it is shown that nonresonant exciton–plasmon interaction can take place in a single semiconductor plasmonic nanomaterial, where the plasmonic and excitonic absorptions share no energy overlap. Here, we design a colloidal heterostructure composed of plasmonic Cu x S and excitonic CsPbBr3, without any spectral overlap to study the nonresonant interaction across two different materials. The heterostructure shows different structural and optical properties such as a strained interface between the two parent components, higher Urbach energy compared to perovskite, and photoluminescence quenching that suggests possible interaction, and its magnetic circular dichroism properties show a clear signature of strong nonresonant exciton–plasmon interaction. To the best of our knowledge, this is the first demonstration of nonresonant exciton–plasmon interaction that can open new possibilities in plasmontronics.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.3c03331</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Spectroscopy and Dynamics of Nano, Hybrid, and Low-Dimensional Materials</subject><ispartof>Journal of physical chemistry. C, 2023-08, Vol.127 (31), p.15353-15362</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a322t-91a811455e694d5ae2c77f4615558b9703cf3b2d572284b405cd0e7eb2ee00d63</citedby><cites>FETCH-LOGICAL-a322t-91a811455e694d5ae2c77f4615558b9703cf3b2d572284b405cd0e7eb2ee00d63</cites><orcidid>0000-0002-0837-1506 ; 0000-0002-3819-4029 ; 0000-0001-7534-704X ; 0000-0001-9424-9170 ; 0000-0001-8559-1089 ; 0000-0002-1793-0576 ; 0000-0003-0533-9874</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.3c03331$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.3c03331$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Chakraborty, Saptarshi</creatorcontrib><creatorcontrib>Dash, Gauttam</creatorcontrib><creatorcontrib>Mannar, Subhashri</creatorcontrib><creatorcontrib>Maurya, Krishna Chand</creatorcontrib><creatorcontrib>Das, Arpan</creatorcontrib><creatorcontrib>Narasimhan, Shobhana</creatorcontrib><creatorcontrib>Saha, Bivas</creatorcontrib><creatorcontrib>Viswanatha, Ranjani</creatorcontrib><title>Nonresonant Exciton–Plasmon Interaction in Metal–Chalcogenide (Cu x S)/Perovskite (CsPbBr3) Based Colloidal Heterostructure</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Heterostructures often exploit exciton–plasmon coupling between two materials to enhance various optical properties, where an essential criterion is the resonant energy coupling between the two materials. Recently, however, it is shown that nonresonant exciton–plasmon interaction can take place in a single semiconductor plasmonic nanomaterial, where the plasmonic and excitonic absorptions share no energy overlap. Here, we design a colloidal heterostructure composed of plasmonic Cu x S and excitonic CsPbBr3, without any spectral overlap to study the nonresonant interaction across two different materials. The heterostructure shows different structural and optical properties such as a strained interface between the two parent components, higher Urbach energy compared to perovskite, and photoluminescence quenching that suggests possible interaction, and its magnetic circular dichroism properties show a clear signature of strong nonresonant exciton–plasmon interaction. To the best of our knowledge, this is the first demonstration of nonresonant exciton–plasmon interaction that can open new possibilities in plasmontronics.</description><subject>C: Spectroscopy and Dynamics of Nano, Hybrid, and Low-Dimensional Materials</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1UMtOwzAQtBBIlMKdo49UIq0fcdMcaVRopQKVgHPkOBtISe3KdlA5wT_wh3wJLq24cdrRzs7s7iB0TkmfEkYHUrn-cq1UnyvCOacHqENTzqIkFuLwD8fJMTpxbkmI4ITyDvq4M9qCM1pqjycbVXujvz-_Fo10K6PxTHuwUvk64FrjW_CyCXT2IhtlnkHXJeCLrMUb_NAbLMCaN_da-23PLYqx5T08lg5KnJmmMXUpGzyF4Gict63yrYVTdFTJxsHZvnbR0_XkMZtG8_ubWXY1jyRnzEcplSNKwyswTONSSGAqSap4SIUQoyJNCFcVL1gpEsZGcREToUoCCRQMgJByyLuI7HxVWO4sVPna1itp33NK8m2AeQgw3waY7wMMksud5JcxrdXhwP_HfwAkGndG</recordid><startdate>20230810</startdate><enddate>20230810</enddate><creator>Chakraborty, Saptarshi</creator><creator>Dash, Gauttam</creator><creator>Mannar, Subhashri</creator><creator>Maurya, Krishna Chand</creator><creator>Das, Arpan</creator><creator>Narasimhan, Shobhana</creator><creator>Saha, Bivas</creator><creator>Viswanatha, Ranjani</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0837-1506</orcidid><orcidid>https://orcid.org/0000-0002-3819-4029</orcidid><orcidid>https://orcid.org/0000-0001-7534-704X</orcidid><orcidid>https://orcid.org/0000-0001-9424-9170</orcidid><orcidid>https://orcid.org/0000-0001-8559-1089</orcidid><orcidid>https://orcid.org/0000-0002-1793-0576</orcidid><orcidid>https://orcid.org/0000-0003-0533-9874</orcidid></search><sort><creationdate>20230810</creationdate><title>Nonresonant Exciton–Plasmon Interaction in Metal–Chalcogenide (Cu x S)/Perovskite (CsPbBr3) Based Colloidal Heterostructure</title><author>Chakraborty, Saptarshi ; Dash, Gauttam ; Mannar, Subhashri ; Maurya, Krishna Chand ; Das, Arpan ; Narasimhan, Shobhana ; Saha, Bivas ; Viswanatha, Ranjani</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a322t-91a811455e694d5ae2c77f4615558b9703cf3b2d572284b405cd0e7eb2ee00d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>C: Spectroscopy and Dynamics of Nano, Hybrid, and Low-Dimensional Materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chakraborty, Saptarshi</creatorcontrib><creatorcontrib>Dash, Gauttam</creatorcontrib><creatorcontrib>Mannar, Subhashri</creatorcontrib><creatorcontrib>Maurya, Krishna Chand</creatorcontrib><creatorcontrib>Das, Arpan</creatorcontrib><creatorcontrib>Narasimhan, Shobhana</creatorcontrib><creatorcontrib>Saha, Bivas</creatorcontrib><creatorcontrib>Viswanatha, Ranjani</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chakraborty, Saptarshi</au><au>Dash, Gauttam</au><au>Mannar, Subhashri</au><au>Maurya, Krishna Chand</au><au>Das, Arpan</au><au>Narasimhan, Shobhana</au><au>Saha, Bivas</au><au>Viswanatha, Ranjani</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonresonant Exciton–Plasmon Interaction in Metal–Chalcogenide (Cu x S)/Perovskite (CsPbBr3) Based Colloidal Heterostructure</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2023-08-10</date><risdate>2023</risdate><volume>127</volume><issue>31</issue><spage>15353</spage><epage>15362</epage><pages>15353-15362</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Heterostructures often exploit exciton–plasmon coupling between two materials to enhance various optical properties, where an essential criterion is the resonant energy coupling between the two materials. Recently, however, it is shown that nonresonant exciton–plasmon interaction can take place in a single semiconductor plasmonic nanomaterial, where the plasmonic and excitonic absorptions share no energy overlap. Here, we design a colloidal heterostructure composed of plasmonic Cu x S and excitonic CsPbBr3, without any spectral overlap to study the nonresonant interaction across two different materials. The heterostructure shows different structural and optical properties such as a strained interface between the two parent components, higher Urbach energy compared to perovskite, and photoluminescence quenching that suggests possible interaction, and its magnetic circular dichroism properties show a clear signature of strong nonresonant exciton–plasmon interaction. To the best of our knowledge, this is the first demonstration of nonresonant exciton–plasmon interaction that can open new possibilities in plasmontronics.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.3c03331</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0837-1506</orcidid><orcidid>https://orcid.org/0000-0002-3819-4029</orcidid><orcidid>https://orcid.org/0000-0001-7534-704X</orcidid><orcidid>https://orcid.org/0000-0001-9424-9170</orcidid><orcidid>https://orcid.org/0000-0001-8559-1089</orcidid><orcidid>https://orcid.org/0000-0002-1793-0576</orcidid><orcidid>https://orcid.org/0000-0003-0533-9874</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2023-08, Vol.127 (31), p.15353-15362 |
issn | 1932-7447 1932-7455 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acs_jpcc_3c03331 |
source | ACS Publications |
subjects | C: Spectroscopy and Dynamics of Nano, Hybrid, and Low-Dimensional Materials |
title | Nonresonant Exciton–Plasmon Interaction in Metal–Chalcogenide (Cu x S)/Perovskite (CsPbBr3) Based Colloidal Heterostructure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A35%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonresonant%20Exciton%E2%80%93Plasmon%20Interaction%20in%20Metal%E2%80%93Chalcogenide%20(Cu%20x%20S)/Perovskite%20(CsPbBr3)%20Based%20Colloidal%20Heterostructure&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Chakraborty,%20Saptarshi&rft.date=2023-08-10&rft.volume=127&rft.issue=31&rft.spage=15353&rft.epage=15362&rft.pages=15353-15362&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.3c03331&rft_dat=%3Cacs_cross%3Eh62094876%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |