Nonresonant Exciton–Plasmon Interaction in Metal–Chalcogenide (Cu x S)/Perovskite (CsPbBr3) Based Colloidal Heterostructure

Heterostructures often exploit exciton–plasmon coupling between two materials to enhance various optical properties, where an essential criterion is the resonant energy coupling between the two materials. Recently, however, it is shown that nonresonant exciton–plasmon interaction can take place in a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2023-08, Vol.127 (31), p.15353-15362
Hauptverfasser: Chakraborty, Saptarshi, Dash, Gauttam, Mannar, Subhashri, Maurya, Krishna Chand, Das, Arpan, Narasimhan, Shobhana, Saha, Bivas, Viswanatha, Ranjani
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15362
container_issue 31
container_start_page 15353
container_title Journal of physical chemistry. C
container_volume 127
creator Chakraborty, Saptarshi
Dash, Gauttam
Mannar, Subhashri
Maurya, Krishna Chand
Das, Arpan
Narasimhan, Shobhana
Saha, Bivas
Viswanatha, Ranjani
description Heterostructures often exploit exciton–plasmon coupling between two materials to enhance various optical properties, where an essential criterion is the resonant energy coupling between the two materials. Recently, however, it is shown that nonresonant exciton–plasmon interaction can take place in a single semiconductor plasmonic nanomaterial, where the plasmonic and excitonic absorptions share no energy overlap. Here, we design a colloidal heterostructure composed of plasmonic Cu x S and excitonic CsPbBr3, without any spectral overlap to study the nonresonant interaction across two different materials. The heterostructure shows different structural and optical properties such as a strained interface between the two parent components, higher Urbach energy compared to perovskite, and photoluminescence quenching that suggests possible interaction, and its magnetic circular dichroism properties show a clear signature of strong nonresonant exciton–plasmon interaction. To the best of our knowledge, this is the first demonstration of nonresonant exciton–plasmon interaction that can open new possibilities in plasmontronics.
doi_str_mv 10.1021/acs.jpcc.3c03331
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcc_3c03331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>h62094876</sourcerecordid><originalsourceid>FETCH-LOGICAL-a322t-91a811455e694d5ae2c77f4615558b9703cf3b2d572284b405cd0e7eb2ee00d63</originalsourceid><addsrcrecordid>eNp1UMtOwzAQtBBIlMKdo49UIq0fcdMcaVRopQKVgHPkOBtISe3KdlA5wT_wh3wJLq24cdrRzs7s7iB0TkmfEkYHUrn-cq1UnyvCOacHqENTzqIkFuLwD8fJMTpxbkmI4ITyDvq4M9qCM1pqjycbVXujvz-_Fo10K6PxTHuwUvk64FrjW_CyCXT2IhtlnkHXJeCLrMUb_NAbLMCaN_da-23PLYqx5T08lg5KnJmmMXUpGzyF4Gict63yrYVTdFTJxsHZvnbR0_XkMZtG8_ubWXY1jyRnzEcplSNKwyswTONSSGAqSap4SIUQoyJNCFcVL1gpEsZGcREToUoCCRQMgJByyLuI7HxVWO4sVPna1itp33NK8m2AeQgw3waY7wMMksud5JcxrdXhwP_HfwAkGndG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nonresonant Exciton–Plasmon Interaction in Metal–Chalcogenide (Cu x S)/Perovskite (CsPbBr3) Based Colloidal Heterostructure</title><source>ACS Publications</source><creator>Chakraborty, Saptarshi ; Dash, Gauttam ; Mannar, Subhashri ; Maurya, Krishna Chand ; Das, Arpan ; Narasimhan, Shobhana ; Saha, Bivas ; Viswanatha, Ranjani</creator><creatorcontrib>Chakraborty, Saptarshi ; Dash, Gauttam ; Mannar, Subhashri ; Maurya, Krishna Chand ; Das, Arpan ; Narasimhan, Shobhana ; Saha, Bivas ; Viswanatha, Ranjani</creatorcontrib><description>Heterostructures often exploit exciton–plasmon coupling between two materials to enhance various optical properties, where an essential criterion is the resonant energy coupling between the two materials. Recently, however, it is shown that nonresonant exciton–plasmon interaction can take place in a single semiconductor plasmonic nanomaterial, where the plasmonic and excitonic absorptions share no energy overlap. Here, we design a colloidal heterostructure composed of plasmonic Cu x S and excitonic CsPbBr3, without any spectral overlap to study the nonresonant interaction across two different materials. The heterostructure shows different structural and optical properties such as a strained interface between the two parent components, higher Urbach energy compared to perovskite, and photoluminescence quenching that suggests possible interaction, and its magnetic circular dichroism properties show a clear signature of strong nonresonant exciton–plasmon interaction. To the best of our knowledge, this is the first demonstration of nonresonant exciton–plasmon interaction that can open new possibilities in plasmontronics.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.3c03331</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Spectroscopy and Dynamics of Nano, Hybrid, and Low-Dimensional Materials</subject><ispartof>Journal of physical chemistry. C, 2023-08, Vol.127 (31), p.15353-15362</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a322t-91a811455e694d5ae2c77f4615558b9703cf3b2d572284b405cd0e7eb2ee00d63</citedby><cites>FETCH-LOGICAL-a322t-91a811455e694d5ae2c77f4615558b9703cf3b2d572284b405cd0e7eb2ee00d63</cites><orcidid>0000-0002-0837-1506 ; 0000-0002-3819-4029 ; 0000-0001-7534-704X ; 0000-0001-9424-9170 ; 0000-0001-8559-1089 ; 0000-0002-1793-0576 ; 0000-0003-0533-9874</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.3c03331$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.3c03331$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Chakraborty, Saptarshi</creatorcontrib><creatorcontrib>Dash, Gauttam</creatorcontrib><creatorcontrib>Mannar, Subhashri</creatorcontrib><creatorcontrib>Maurya, Krishna Chand</creatorcontrib><creatorcontrib>Das, Arpan</creatorcontrib><creatorcontrib>Narasimhan, Shobhana</creatorcontrib><creatorcontrib>Saha, Bivas</creatorcontrib><creatorcontrib>Viswanatha, Ranjani</creatorcontrib><title>Nonresonant Exciton–Plasmon Interaction in Metal–Chalcogenide (Cu x S)/Perovskite (CsPbBr3) Based Colloidal Heterostructure</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Heterostructures often exploit exciton–plasmon coupling between two materials to enhance various optical properties, where an essential criterion is the resonant energy coupling between the two materials. Recently, however, it is shown that nonresonant exciton–plasmon interaction can take place in a single semiconductor plasmonic nanomaterial, where the plasmonic and excitonic absorptions share no energy overlap. Here, we design a colloidal heterostructure composed of plasmonic Cu x S and excitonic CsPbBr3, without any spectral overlap to study the nonresonant interaction across two different materials. The heterostructure shows different structural and optical properties such as a strained interface between the two parent components, higher Urbach energy compared to perovskite, and photoluminescence quenching that suggests possible interaction, and its magnetic circular dichroism properties show a clear signature of strong nonresonant exciton–plasmon interaction. To the best of our knowledge, this is the first demonstration of nonresonant exciton–plasmon interaction that can open new possibilities in plasmontronics.</description><subject>C: Spectroscopy and Dynamics of Nano, Hybrid, and Low-Dimensional Materials</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1UMtOwzAQtBBIlMKdo49UIq0fcdMcaVRopQKVgHPkOBtISe3KdlA5wT_wh3wJLq24cdrRzs7s7iB0TkmfEkYHUrn-cq1UnyvCOacHqENTzqIkFuLwD8fJMTpxbkmI4ITyDvq4M9qCM1pqjycbVXujvz-_Fo10K6PxTHuwUvk64FrjW_CyCXT2IhtlnkHXJeCLrMUb_NAbLMCaN_da-23PLYqx5T08lg5KnJmmMXUpGzyF4Gict63yrYVTdFTJxsHZvnbR0_XkMZtG8_ubWXY1jyRnzEcplSNKwyswTONSSGAqSap4SIUQoyJNCFcVL1gpEsZGcREToUoCCRQMgJByyLuI7HxVWO4sVPna1itp33NK8m2AeQgw3waY7wMMksud5JcxrdXhwP_HfwAkGndG</recordid><startdate>20230810</startdate><enddate>20230810</enddate><creator>Chakraborty, Saptarshi</creator><creator>Dash, Gauttam</creator><creator>Mannar, Subhashri</creator><creator>Maurya, Krishna Chand</creator><creator>Das, Arpan</creator><creator>Narasimhan, Shobhana</creator><creator>Saha, Bivas</creator><creator>Viswanatha, Ranjani</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0837-1506</orcidid><orcidid>https://orcid.org/0000-0002-3819-4029</orcidid><orcidid>https://orcid.org/0000-0001-7534-704X</orcidid><orcidid>https://orcid.org/0000-0001-9424-9170</orcidid><orcidid>https://orcid.org/0000-0001-8559-1089</orcidid><orcidid>https://orcid.org/0000-0002-1793-0576</orcidid><orcidid>https://orcid.org/0000-0003-0533-9874</orcidid></search><sort><creationdate>20230810</creationdate><title>Nonresonant Exciton–Plasmon Interaction in Metal–Chalcogenide (Cu x S)/Perovskite (CsPbBr3) Based Colloidal Heterostructure</title><author>Chakraborty, Saptarshi ; Dash, Gauttam ; Mannar, Subhashri ; Maurya, Krishna Chand ; Das, Arpan ; Narasimhan, Shobhana ; Saha, Bivas ; Viswanatha, Ranjani</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a322t-91a811455e694d5ae2c77f4615558b9703cf3b2d572284b405cd0e7eb2ee00d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>C: Spectroscopy and Dynamics of Nano, Hybrid, and Low-Dimensional Materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chakraborty, Saptarshi</creatorcontrib><creatorcontrib>Dash, Gauttam</creatorcontrib><creatorcontrib>Mannar, Subhashri</creatorcontrib><creatorcontrib>Maurya, Krishna Chand</creatorcontrib><creatorcontrib>Das, Arpan</creatorcontrib><creatorcontrib>Narasimhan, Shobhana</creatorcontrib><creatorcontrib>Saha, Bivas</creatorcontrib><creatorcontrib>Viswanatha, Ranjani</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chakraborty, Saptarshi</au><au>Dash, Gauttam</au><au>Mannar, Subhashri</au><au>Maurya, Krishna Chand</au><au>Das, Arpan</au><au>Narasimhan, Shobhana</au><au>Saha, Bivas</au><au>Viswanatha, Ranjani</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonresonant Exciton–Plasmon Interaction in Metal–Chalcogenide (Cu x S)/Perovskite (CsPbBr3) Based Colloidal Heterostructure</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2023-08-10</date><risdate>2023</risdate><volume>127</volume><issue>31</issue><spage>15353</spage><epage>15362</epage><pages>15353-15362</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Heterostructures often exploit exciton–plasmon coupling between two materials to enhance various optical properties, where an essential criterion is the resonant energy coupling between the two materials. Recently, however, it is shown that nonresonant exciton–plasmon interaction can take place in a single semiconductor plasmonic nanomaterial, where the plasmonic and excitonic absorptions share no energy overlap. Here, we design a colloidal heterostructure composed of plasmonic Cu x S and excitonic CsPbBr3, without any spectral overlap to study the nonresonant interaction across two different materials. The heterostructure shows different structural and optical properties such as a strained interface between the two parent components, higher Urbach energy compared to perovskite, and photoluminescence quenching that suggests possible interaction, and its magnetic circular dichroism properties show a clear signature of strong nonresonant exciton–plasmon interaction. To the best of our knowledge, this is the first demonstration of nonresonant exciton–plasmon interaction that can open new possibilities in plasmontronics.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.3c03331</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0837-1506</orcidid><orcidid>https://orcid.org/0000-0002-3819-4029</orcidid><orcidid>https://orcid.org/0000-0001-7534-704X</orcidid><orcidid>https://orcid.org/0000-0001-9424-9170</orcidid><orcidid>https://orcid.org/0000-0001-8559-1089</orcidid><orcidid>https://orcid.org/0000-0002-1793-0576</orcidid><orcidid>https://orcid.org/0000-0003-0533-9874</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2023-08, Vol.127 (31), p.15353-15362
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_acs_jpcc_3c03331
source ACS Publications
subjects C: Spectroscopy and Dynamics of Nano, Hybrid, and Low-Dimensional Materials
title Nonresonant Exciton–Plasmon Interaction in Metal–Chalcogenide (Cu x S)/Perovskite (CsPbBr3) Based Colloidal Heterostructure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A35%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonresonant%20Exciton%E2%80%93Plasmon%20Interaction%20in%20Metal%E2%80%93Chalcogenide%20(Cu%20x%20S)/Perovskite%20(CsPbBr3)%20Based%20Colloidal%20Heterostructure&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Chakraborty,%20Saptarshi&rft.date=2023-08-10&rft.volume=127&rft.issue=31&rft.spage=15353&rft.epage=15362&rft.pages=15353-15362&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.3c03331&rft_dat=%3Cacs_cross%3Eh62094876%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true