A First-Principles Approach to Modeling Interfacial Capacitance in Graphene-Based Electrodes

We present a first-principles computational model to calculate the interfacial capacitance of low-dimensional materials in contact with a bulk substrate. The model is based on density functional theory (DFT) calculations and incorporates key electrostatic and quantum mechanical components of electri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2023-07, Vol.127 (28), p.13987-13995
Hauptverfasser: Gameel, Kareem M., Elshazly, Mohamed K., Huzayyin, Ahmed, Dawson, Francis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13995
container_issue 28
container_start_page 13987
container_title Journal of physical chemistry. C
container_volume 127
creator Gameel, Kareem M.
Elshazly, Mohamed K.
Huzayyin, Ahmed
Dawson, Francis
description We present a first-principles computational model to calculate the interfacial capacitance of low-dimensional materials in contact with a bulk substrate. The model is based on density functional theory (DFT) calculations and incorporates key electrostatic and quantum mechanical components of electric field shielding in a nanoscopic interface. A material-agnostic formalism based on classical electromagnetic theory is introduced that allows the quantification of the electrostatic interfacial capacitance. The case studies investigated are the interfaces of monolayer graphene and bilayer graphene adsorbed on a silica substrate. Our model predicts the electrostatic capacitance in the studied interfaces to be field-independent, resulting in a reduction of the slope of the quantum capacitance with a shift in its minimum, aligning accurately and consistently with experimental measurements for both monolayer and bilayer graphene. The model provides an improved representation of the interfacial capacitance of low-dimensional materials, offering a better understanding of the electrochemical behavior of nanoscopic interfaces.
doi_str_mv 10.1021/acs.jpcc.3c03180
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcc_3c03180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b00758205</sourcerecordid><originalsourceid>FETCH-LOGICAL-a280t-7784e7c3c74fdd8ceca5da2ed377937a4f31347a934ad18131e79a22ded261ca3</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsFbvHvcHmLpfcZNjLbUWKnrQmxCG2YndEjfLbjz4701t8eZpXpj3GYaHsWspZlIoeQuYZ7uIONMotKzECZvIWqvCmrI8_cvGnrOLnHdClFpIPWHvc_7gUx6Kl-QD-thR5vMYUw-45UPPn3pHnQ8ffB0GSi2gh44vII5hgIDEfeCrBHFLgYp7yOT4siMc0sjlS3bWQpfp6jin7O1h-bp4LDbPq_VivilAVWIorK0MWdRoTetchYRQOlDktLW1tmBaLbWxUGsDTlZSS7I1KOXIqTuJoKdMHO5i6nNO1DYx-U9I340Uzd5OM9pp9naao50RuTkgv5v-K4Xxwf_rPw-Aaak</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A First-Principles Approach to Modeling Interfacial Capacitance in Graphene-Based Electrodes</title><source>ACS Publications</source><creator>Gameel, Kareem M. ; Elshazly, Mohamed K. ; Huzayyin, Ahmed ; Dawson, Francis</creator><creatorcontrib>Gameel, Kareem M. ; Elshazly, Mohamed K. ; Huzayyin, Ahmed ; Dawson, Francis</creatorcontrib><description>We present a first-principles computational model to calculate the interfacial capacitance of low-dimensional materials in contact with a bulk substrate. The model is based on density functional theory (DFT) calculations and incorporates key electrostatic and quantum mechanical components of electric field shielding in a nanoscopic interface. A material-agnostic formalism based on classical electromagnetic theory is introduced that allows the quantification of the electrostatic interfacial capacitance. The case studies investigated are the interfaces of monolayer graphene and bilayer graphene adsorbed on a silica substrate. Our model predicts the electrostatic capacitance in the studied interfaces to be field-independent, resulting in a reduction of the slope of the quantum capacitance with a shift in its minimum, aligning accurately and consistently with experimental measurements for both monolayer and bilayer graphene. The model provides an improved representation of the interfacial capacitance of low-dimensional materials, offering a better understanding of the electrochemical behavior of nanoscopic interfaces.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.3c03180</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Physical Properties of Materials and Interfaces</subject><ispartof>Journal of physical chemistry. C, 2023-07, Vol.127 (28), p.13987-13995</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a280t-7784e7c3c74fdd8ceca5da2ed377937a4f31347a934ad18131e79a22ded261ca3</citedby><cites>FETCH-LOGICAL-a280t-7784e7c3c74fdd8ceca5da2ed377937a4f31347a934ad18131e79a22ded261ca3</cites><orcidid>0000-0001-5546-3596 ; 0000-0002-1168-9830</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.3c03180$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.3c03180$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Gameel, Kareem M.</creatorcontrib><creatorcontrib>Elshazly, Mohamed K.</creatorcontrib><creatorcontrib>Huzayyin, Ahmed</creatorcontrib><creatorcontrib>Dawson, Francis</creatorcontrib><title>A First-Principles Approach to Modeling Interfacial Capacitance in Graphene-Based Electrodes</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>We present a first-principles computational model to calculate the interfacial capacitance of low-dimensional materials in contact with a bulk substrate. The model is based on density functional theory (DFT) calculations and incorporates key electrostatic and quantum mechanical components of electric field shielding in a nanoscopic interface. A material-agnostic formalism based on classical electromagnetic theory is introduced that allows the quantification of the electrostatic interfacial capacitance. The case studies investigated are the interfaces of monolayer graphene and bilayer graphene adsorbed on a silica substrate. Our model predicts the electrostatic capacitance in the studied interfaces to be field-independent, resulting in a reduction of the slope of the quantum capacitance with a shift in its minimum, aligning accurately and consistently with experimental measurements for both monolayer and bilayer graphene. The model provides an improved representation of the interfacial capacitance of low-dimensional materials, offering a better understanding of the electrochemical behavior of nanoscopic interfaces.</description><subject>C: Physical Properties of Materials and Interfaces</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE1Lw0AQhhdRsFbvHvcHmLpfcZNjLbUWKnrQmxCG2YndEjfLbjz4701t8eZpXpj3GYaHsWspZlIoeQuYZ7uIONMotKzECZvIWqvCmrI8_cvGnrOLnHdClFpIPWHvc_7gUx6Kl-QD-thR5vMYUw-45UPPn3pHnQ8ffB0GSi2gh44vII5hgIDEfeCrBHFLgYp7yOT4siMc0sjlS3bWQpfp6jin7O1h-bp4LDbPq_VivilAVWIorK0MWdRoTetchYRQOlDktLW1tmBaLbWxUGsDTlZSS7I1KOXIqTuJoKdMHO5i6nNO1DYx-U9I340Uzd5OM9pp9naao50RuTkgv5v-K4Xxwf_rPw-Aaak</recordid><startdate>20230720</startdate><enddate>20230720</enddate><creator>Gameel, Kareem M.</creator><creator>Elshazly, Mohamed K.</creator><creator>Huzayyin, Ahmed</creator><creator>Dawson, Francis</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5546-3596</orcidid><orcidid>https://orcid.org/0000-0002-1168-9830</orcidid></search><sort><creationdate>20230720</creationdate><title>A First-Principles Approach to Modeling Interfacial Capacitance in Graphene-Based Electrodes</title><author>Gameel, Kareem M. ; Elshazly, Mohamed K. ; Huzayyin, Ahmed ; Dawson, Francis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a280t-7784e7c3c74fdd8ceca5da2ed377937a4f31347a934ad18131e79a22ded261ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>C: Physical Properties of Materials and Interfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gameel, Kareem M.</creatorcontrib><creatorcontrib>Elshazly, Mohamed K.</creatorcontrib><creatorcontrib>Huzayyin, Ahmed</creatorcontrib><creatorcontrib>Dawson, Francis</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gameel, Kareem M.</au><au>Elshazly, Mohamed K.</au><au>Huzayyin, Ahmed</au><au>Dawson, Francis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A First-Principles Approach to Modeling Interfacial Capacitance in Graphene-Based Electrodes</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2023-07-20</date><risdate>2023</risdate><volume>127</volume><issue>28</issue><spage>13987</spage><epage>13995</epage><pages>13987-13995</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>We present a first-principles computational model to calculate the interfacial capacitance of low-dimensional materials in contact with a bulk substrate. The model is based on density functional theory (DFT) calculations and incorporates key electrostatic and quantum mechanical components of electric field shielding in a nanoscopic interface. A material-agnostic formalism based on classical electromagnetic theory is introduced that allows the quantification of the electrostatic interfacial capacitance. The case studies investigated are the interfaces of monolayer graphene and bilayer graphene adsorbed on a silica substrate. Our model predicts the electrostatic capacitance in the studied interfaces to be field-independent, resulting in a reduction of the slope of the quantum capacitance with a shift in its minimum, aligning accurately and consistently with experimental measurements for both monolayer and bilayer graphene. The model provides an improved representation of the interfacial capacitance of low-dimensional materials, offering a better understanding of the electrochemical behavior of nanoscopic interfaces.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.3c03180</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5546-3596</orcidid><orcidid>https://orcid.org/0000-0002-1168-9830</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2023-07, Vol.127 (28), p.13987-13995
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_acs_jpcc_3c03180
source ACS Publications
subjects C: Physical Properties of Materials and Interfaces
title A First-Principles Approach to Modeling Interfacial Capacitance in Graphene-Based Electrodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T12%3A13%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20First-Principles%20Approach%20to%20Modeling%20Interfacial%20Capacitance%20in%20Graphene-Based%20Electrodes&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Gameel,%20Kareem%20M.&rft.date=2023-07-20&rft.volume=127&rft.issue=28&rft.spage=13987&rft.epage=13995&rft.pages=13987-13995&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.3c03180&rft_dat=%3Cacs_cross%3Eb00758205%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true