Rational Design of NiO-8YSZ Screen-Printing Slurry for High-Performance Large-Area Solid Oxide Cells

An efficient and stable NiO-8YSZ hydrogen electrode for solid oxide cells (SOCs) is vital in the context of increasing global intermittent renewable energy sources. Most fundamental studies of SOCs have been carried out using button cells with small active areas, whereas the screen-printing of NiO-8...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2023-04, Vol.127 (14), p.6629-6637
Hauptverfasser: Ye, Chencheng, Bi, Susu, Liao, Pengfei, Huang, Yanni, Lin, Xiao, Wang, Yu, Zhang, Linjuan, Wang, Jian-Qiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6637
container_issue 14
container_start_page 6629
container_title Journal of physical chemistry. C
container_volume 127
creator Ye, Chencheng
Bi, Susu
Liao, Pengfei
Huang, Yanni
Lin, Xiao
Wang, Yu
Zhang, Linjuan
Wang, Jian-Qiang
description An efficient and stable NiO-8YSZ hydrogen electrode for solid oxide cells (SOCs) is vital in the context of increasing global intermittent renewable energy sources. Most fundamental studies of SOCs have been carried out using button cells with small active areas, whereas the screen-printing of NiO-8YSZ hydrogen electrodes required for large-area SOCs have been ignored. In this study, we provide an alternative method for designing a highly active and stable fuel electrode for SOCs application by improving the slurry dispersant effect. The dispersion states and stabilities of NiO-8YSZ screen-printing slurries were quantitatively analyzed using the instability index, relaxation time, and viscosity. Scanning electron microscopy images of the resultant films indicate that the microstructure can be improved by optimizing the dispersants within the ink. The electrochemical performance of the resulting SOCs with optimized hydrogen electrode microstructures was examined at a 5 × 5 cm2 scale (16 cm2 active area). Single cells delivered a peak power density of 0.57 W·cm–2 at 750 °C in fuel cell mode and had a high current density of −0.81 A·cm–2 at 1.30 V in electrolysis mode. These results highlight the potential for large-scale high-performance SOCs production by designing NiO-8YSZ electrode nanostructures via a proper dispersant with the stability of screen-printing paste.
doi_str_mv 10.1021/acs.jpcc.2c09021
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcc_2c09021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b969869238</sourcerecordid><originalsourceid>FETCH-LOGICAL-a280t-bc389530f5dea73f877cc14cc42d21db25e7aab1e9edc2f2b69b93ea8aa146a83</originalsourceid><addsrcrecordid>eNp1kE9PwkAQxTdGExG9e9wP4OL-aWl7JKhgQoRYPeilme7O1iWlJbslkW9vEeLN07zMzHt5-RFyK_hIcCnuQYfReqv1SGqe9YszMhCZkiyJ4vj8T0fJJbkKYc15rLhQA2JeoXNtAzV9wOCqhraWvrglSz_yT5prj9iwlXdN55qK5vXO-z21radzV32xFfpeb6DRSBfgK2QTj0DztnaGLr-dQTrFug7X5MJCHfDmNIfk_enxbTpni-XseTpZMJAp71ipVZr1vWxsEBJl0yTRWkRaR9JIYUoZYwJQCszQaGllOc7KTCGkACIaQ6qGhB9ztW9D8GiLrXcb8PtC8OJAqegpFQdKxYlSb7k7Wn4v7c73KML_7z8miGww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Rational Design of NiO-8YSZ Screen-Printing Slurry for High-Performance Large-Area Solid Oxide Cells</title><source>American Chemical Society Publications</source><creator>Ye, Chencheng ; Bi, Susu ; Liao, Pengfei ; Huang, Yanni ; Lin, Xiao ; Wang, Yu ; Zhang, Linjuan ; Wang, Jian-Qiang</creator><creatorcontrib>Ye, Chencheng ; Bi, Susu ; Liao, Pengfei ; Huang, Yanni ; Lin, Xiao ; Wang, Yu ; Zhang, Linjuan ; Wang, Jian-Qiang</creatorcontrib><description>An efficient and stable NiO-8YSZ hydrogen electrode for solid oxide cells (SOCs) is vital in the context of increasing global intermittent renewable energy sources. Most fundamental studies of SOCs have been carried out using button cells with small active areas, whereas the screen-printing of NiO-8YSZ hydrogen electrodes required for large-area SOCs have been ignored. In this study, we provide an alternative method for designing a highly active and stable fuel electrode for SOCs application by improving the slurry dispersant effect. The dispersion states and stabilities of NiO-8YSZ screen-printing slurries were quantitatively analyzed using the instability index, relaxation time, and viscosity. Scanning electron microscopy images of the resultant films indicate that the microstructure can be improved by optimizing the dispersants within the ink. The electrochemical performance of the resulting SOCs with optimized hydrogen electrode microstructures was examined at a 5 × 5 cm2 scale (16 cm2 active area). Single cells delivered a peak power density of 0.57 W·cm–2 at 750 °C in fuel cell mode and had a high current density of −0.81 A·cm–2 at 1.30 V in electrolysis mode. These results highlight the potential for large-scale high-performance SOCs production by designing NiO-8YSZ electrode nanostructures via a proper dispersant with the stability of screen-printing paste.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.2c09021</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Energy Conversion and Storage</subject><ispartof>Journal of physical chemistry. C, 2023-04, Vol.127 (14), p.6629-6637</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a280t-bc389530f5dea73f877cc14cc42d21db25e7aab1e9edc2f2b69b93ea8aa146a83</citedby><cites>FETCH-LOGICAL-a280t-bc389530f5dea73f877cc14cc42d21db25e7aab1e9edc2f2b69b93ea8aa146a83</cites><orcidid>0000-0003-4704-5807 ; 0000-0003-4123-7592</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.2c09021$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.2c09021$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids></links><search><creatorcontrib>Ye, Chencheng</creatorcontrib><creatorcontrib>Bi, Susu</creatorcontrib><creatorcontrib>Liao, Pengfei</creatorcontrib><creatorcontrib>Huang, Yanni</creatorcontrib><creatorcontrib>Lin, Xiao</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Zhang, Linjuan</creatorcontrib><creatorcontrib>Wang, Jian-Qiang</creatorcontrib><title>Rational Design of NiO-8YSZ Screen-Printing Slurry for High-Performance Large-Area Solid Oxide Cells</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>An efficient and stable NiO-8YSZ hydrogen electrode for solid oxide cells (SOCs) is vital in the context of increasing global intermittent renewable energy sources. Most fundamental studies of SOCs have been carried out using button cells with small active areas, whereas the screen-printing of NiO-8YSZ hydrogen electrodes required for large-area SOCs have been ignored. In this study, we provide an alternative method for designing a highly active and stable fuel electrode for SOCs application by improving the slurry dispersant effect. The dispersion states and stabilities of NiO-8YSZ screen-printing slurries were quantitatively analyzed using the instability index, relaxation time, and viscosity. Scanning electron microscopy images of the resultant films indicate that the microstructure can be improved by optimizing the dispersants within the ink. The electrochemical performance of the resulting SOCs with optimized hydrogen electrode microstructures was examined at a 5 × 5 cm2 scale (16 cm2 active area). Single cells delivered a peak power density of 0.57 W·cm–2 at 750 °C in fuel cell mode and had a high current density of −0.81 A·cm–2 at 1.30 V in electrolysis mode. These results highlight the potential for large-scale high-performance SOCs production by designing NiO-8YSZ electrode nanostructures via a proper dispersant with the stability of screen-printing paste.</description><subject>C: Energy Conversion and Storage</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE9PwkAQxTdGExG9e9wP4OL-aWl7JKhgQoRYPeilme7O1iWlJbslkW9vEeLN07zMzHt5-RFyK_hIcCnuQYfReqv1SGqe9YszMhCZkiyJ4vj8T0fJJbkKYc15rLhQA2JeoXNtAzV9wOCqhraWvrglSz_yT5prj9iwlXdN55qK5vXO-z21radzV32xFfpeb6DRSBfgK2QTj0DztnaGLr-dQTrFug7X5MJCHfDmNIfk_enxbTpni-XseTpZMJAp71ipVZr1vWxsEBJl0yTRWkRaR9JIYUoZYwJQCszQaGllOc7KTCGkACIaQ6qGhB9ztW9D8GiLrXcb8PtC8OJAqegpFQdKxYlSb7k7Wn4v7c73KML_7z8miGww</recordid><startdate>20230413</startdate><enddate>20230413</enddate><creator>Ye, Chencheng</creator><creator>Bi, Susu</creator><creator>Liao, Pengfei</creator><creator>Huang, Yanni</creator><creator>Lin, Xiao</creator><creator>Wang, Yu</creator><creator>Zhang, Linjuan</creator><creator>Wang, Jian-Qiang</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4704-5807</orcidid><orcidid>https://orcid.org/0000-0003-4123-7592</orcidid></search><sort><creationdate>20230413</creationdate><title>Rational Design of NiO-8YSZ Screen-Printing Slurry for High-Performance Large-Area Solid Oxide Cells</title><author>Ye, Chencheng ; Bi, Susu ; Liao, Pengfei ; Huang, Yanni ; Lin, Xiao ; Wang, Yu ; Zhang, Linjuan ; Wang, Jian-Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a280t-bc389530f5dea73f877cc14cc42d21db25e7aab1e9edc2f2b69b93ea8aa146a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>C: Energy Conversion and Storage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Chencheng</creatorcontrib><creatorcontrib>Bi, Susu</creatorcontrib><creatorcontrib>Liao, Pengfei</creatorcontrib><creatorcontrib>Huang, Yanni</creatorcontrib><creatorcontrib>Lin, Xiao</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Zhang, Linjuan</creatorcontrib><creatorcontrib>Wang, Jian-Qiang</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Chencheng</au><au>Bi, Susu</au><au>Liao, Pengfei</au><au>Huang, Yanni</au><au>Lin, Xiao</au><au>Wang, Yu</au><au>Zhang, Linjuan</au><au>Wang, Jian-Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rational Design of NiO-8YSZ Screen-Printing Slurry for High-Performance Large-Area Solid Oxide Cells</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2023-04-13</date><risdate>2023</risdate><volume>127</volume><issue>14</issue><spage>6629</spage><epage>6637</epage><pages>6629-6637</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>An efficient and stable NiO-8YSZ hydrogen electrode for solid oxide cells (SOCs) is vital in the context of increasing global intermittent renewable energy sources. Most fundamental studies of SOCs have been carried out using button cells with small active areas, whereas the screen-printing of NiO-8YSZ hydrogen electrodes required for large-area SOCs have been ignored. In this study, we provide an alternative method for designing a highly active and stable fuel electrode for SOCs application by improving the slurry dispersant effect. The dispersion states and stabilities of NiO-8YSZ screen-printing slurries were quantitatively analyzed using the instability index, relaxation time, and viscosity. Scanning electron microscopy images of the resultant films indicate that the microstructure can be improved by optimizing the dispersants within the ink. The electrochemical performance of the resulting SOCs with optimized hydrogen electrode microstructures was examined at a 5 × 5 cm2 scale (16 cm2 active area). Single cells delivered a peak power density of 0.57 W·cm–2 at 750 °C in fuel cell mode and had a high current density of −0.81 A·cm–2 at 1.30 V in electrolysis mode. These results highlight the potential for large-scale high-performance SOCs production by designing NiO-8YSZ electrode nanostructures via a proper dispersant with the stability of screen-printing paste.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.2c09021</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4704-5807</orcidid><orcidid>https://orcid.org/0000-0003-4123-7592</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2023-04, Vol.127 (14), p.6629-6637
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_acs_jpcc_2c09021
source American Chemical Society Publications
subjects C: Energy Conversion and Storage
title Rational Design of NiO-8YSZ Screen-Printing Slurry for High-Performance Large-Area Solid Oxide Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T16%3A01%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rational%20Design%20of%20NiO-8YSZ%20Screen-Printing%20Slurry%20for%20High-Performance%20Large-Area%20Solid%20Oxide%20Cells&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Ye,%20Chencheng&rft.date=2023-04-13&rft.volume=127&rft.issue=14&rft.spage=6629&rft.epage=6637&rft.pages=6629-6637&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.2c09021&rft_dat=%3Cacs_cross%3Eb969869238%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true