Rational Design of NiO-8YSZ Screen-Printing Slurry for High-Performance Large-Area Solid Oxide Cells
An efficient and stable NiO-8YSZ hydrogen electrode for solid oxide cells (SOCs) is vital in the context of increasing global intermittent renewable energy sources. Most fundamental studies of SOCs have been carried out using button cells with small active areas, whereas the screen-printing of NiO-8...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2023-04, Vol.127 (14), p.6629-6637 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6637 |
---|---|
container_issue | 14 |
container_start_page | 6629 |
container_title | Journal of physical chemistry. C |
container_volume | 127 |
creator | Ye, Chencheng Bi, Susu Liao, Pengfei Huang, Yanni Lin, Xiao Wang, Yu Zhang, Linjuan Wang, Jian-Qiang |
description | An efficient and stable NiO-8YSZ hydrogen electrode for solid oxide cells (SOCs) is vital in the context of increasing global intermittent renewable energy sources. Most fundamental studies of SOCs have been carried out using button cells with small active areas, whereas the screen-printing of NiO-8YSZ hydrogen electrodes required for large-area SOCs have been ignored. In this study, we provide an alternative method for designing a highly active and stable fuel electrode for SOCs application by improving the slurry dispersant effect. The dispersion states and stabilities of NiO-8YSZ screen-printing slurries were quantitatively analyzed using the instability index, relaxation time, and viscosity. Scanning electron microscopy images of the resultant films indicate that the microstructure can be improved by optimizing the dispersants within the ink. The electrochemical performance of the resulting SOCs with optimized hydrogen electrode microstructures was examined at a 5 × 5 cm2 scale (16 cm2 active area). Single cells delivered a peak power density of 0.57 W·cm–2 at 750 °C in fuel cell mode and had a high current density of −0.81 A·cm–2 at 1.30 V in electrolysis mode. These results highlight the potential for large-scale high-performance SOCs production by designing NiO-8YSZ electrode nanostructures via a proper dispersant with the stability of screen-printing paste. |
doi_str_mv | 10.1021/acs.jpcc.2c09021 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcc_2c09021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b969869238</sourcerecordid><originalsourceid>FETCH-LOGICAL-a280t-bc389530f5dea73f877cc14cc42d21db25e7aab1e9edc2f2b69b93ea8aa146a83</originalsourceid><addsrcrecordid>eNp1kE9PwkAQxTdGExG9e9wP4OL-aWl7JKhgQoRYPeilme7O1iWlJbslkW9vEeLN07zMzHt5-RFyK_hIcCnuQYfReqv1SGqe9YszMhCZkiyJ4vj8T0fJJbkKYc15rLhQA2JeoXNtAzV9wOCqhraWvrglSz_yT5prj9iwlXdN55qK5vXO-z21radzV32xFfpeb6DRSBfgK2QTj0DztnaGLr-dQTrFug7X5MJCHfDmNIfk_enxbTpni-XseTpZMJAp71ipVZr1vWxsEBJl0yTRWkRaR9JIYUoZYwJQCszQaGllOc7KTCGkACIaQ6qGhB9ztW9D8GiLrXcb8PtC8OJAqegpFQdKxYlSb7k7Wn4v7c73KML_7z8miGww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Rational Design of NiO-8YSZ Screen-Printing Slurry for High-Performance Large-Area Solid Oxide Cells</title><source>American Chemical Society Publications</source><creator>Ye, Chencheng ; Bi, Susu ; Liao, Pengfei ; Huang, Yanni ; Lin, Xiao ; Wang, Yu ; Zhang, Linjuan ; Wang, Jian-Qiang</creator><creatorcontrib>Ye, Chencheng ; Bi, Susu ; Liao, Pengfei ; Huang, Yanni ; Lin, Xiao ; Wang, Yu ; Zhang, Linjuan ; Wang, Jian-Qiang</creatorcontrib><description>An efficient and stable NiO-8YSZ hydrogen electrode for solid oxide cells (SOCs) is vital in the context of increasing global intermittent renewable energy sources. Most fundamental studies of SOCs have been carried out using button cells with small active areas, whereas the screen-printing of NiO-8YSZ hydrogen electrodes required for large-area SOCs have been ignored. In this study, we provide an alternative method for designing a highly active and stable fuel electrode for SOCs application by improving the slurry dispersant effect. The dispersion states and stabilities of NiO-8YSZ screen-printing slurries were quantitatively analyzed using the instability index, relaxation time, and viscosity. Scanning electron microscopy images of the resultant films indicate that the microstructure can be improved by optimizing the dispersants within the ink. The electrochemical performance of the resulting SOCs with optimized hydrogen electrode microstructures was examined at a 5 × 5 cm2 scale (16 cm2 active area). Single cells delivered a peak power density of 0.57 W·cm–2 at 750 °C in fuel cell mode and had a high current density of −0.81 A·cm–2 at 1.30 V in electrolysis mode. These results highlight the potential for large-scale high-performance SOCs production by designing NiO-8YSZ electrode nanostructures via a proper dispersant with the stability of screen-printing paste.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.2c09021</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Energy Conversion and Storage</subject><ispartof>Journal of physical chemistry. C, 2023-04, Vol.127 (14), p.6629-6637</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a280t-bc389530f5dea73f877cc14cc42d21db25e7aab1e9edc2f2b69b93ea8aa146a83</citedby><cites>FETCH-LOGICAL-a280t-bc389530f5dea73f877cc14cc42d21db25e7aab1e9edc2f2b69b93ea8aa146a83</cites><orcidid>0000-0003-4704-5807 ; 0000-0003-4123-7592</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.2c09021$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.2c09021$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids></links><search><creatorcontrib>Ye, Chencheng</creatorcontrib><creatorcontrib>Bi, Susu</creatorcontrib><creatorcontrib>Liao, Pengfei</creatorcontrib><creatorcontrib>Huang, Yanni</creatorcontrib><creatorcontrib>Lin, Xiao</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Zhang, Linjuan</creatorcontrib><creatorcontrib>Wang, Jian-Qiang</creatorcontrib><title>Rational Design of NiO-8YSZ Screen-Printing Slurry for High-Performance Large-Area Solid Oxide Cells</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>An efficient and stable NiO-8YSZ hydrogen electrode for solid oxide cells (SOCs) is vital in the context of increasing global intermittent renewable energy sources. Most fundamental studies of SOCs have been carried out using button cells with small active areas, whereas the screen-printing of NiO-8YSZ hydrogen electrodes required for large-area SOCs have been ignored. In this study, we provide an alternative method for designing a highly active and stable fuel electrode for SOCs application by improving the slurry dispersant effect. The dispersion states and stabilities of NiO-8YSZ screen-printing slurries were quantitatively analyzed using the instability index, relaxation time, and viscosity. Scanning electron microscopy images of the resultant films indicate that the microstructure can be improved by optimizing the dispersants within the ink. The electrochemical performance of the resulting SOCs with optimized hydrogen electrode microstructures was examined at a 5 × 5 cm2 scale (16 cm2 active area). Single cells delivered a peak power density of 0.57 W·cm–2 at 750 °C in fuel cell mode and had a high current density of −0.81 A·cm–2 at 1.30 V in electrolysis mode. These results highlight the potential for large-scale high-performance SOCs production by designing NiO-8YSZ electrode nanostructures via a proper dispersant with the stability of screen-printing paste.</description><subject>C: Energy Conversion and Storage</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE9PwkAQxTdGExG9e9wP4OL-aWl7JKhgQoRYPeilme7O1iWlJbslkW9vEeLN07zMzHt5-RFyK_hIcCnuQYfReqv1SGqe9YszMhCZkiyJ4vj8T0fJJbkKYc15rLhQA2JeoXNtAzV9wOCqhraWvrglSz_yT5prj9iwlXdN55qK5vXO-z21radzV32xFfpeb6DRSBfgK2QTj0DztnaGLr-dQTrFug7X5MJCHfDmNIfk_enxbTpni-XseTpZMJAp71ipVZr1vWxsEBJl0yTRWkRaR9JIYUoZYwJQCszQaGllOc7KTCGkACIaQ6qGhB9ztW9D8GiLrXcb8PtC8OJAqegpFQdKxYlSb7k7Wn4v7c73KML_7z8miGww</recordid><startdate>20230413</startdate><enddate>20230413</enddate><creator>Ye, Chencheng</creator><creator>Bi, Susu</creator><creator>Liao, Pengfei</creator><creator>Huang, Yanni</creator><creator>Lin, Xiao</creator><creator>Wang, Yu</creator><creator>Zhang, Linjuan</creator><creator>Wang, Jian-Qiang</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4704-5807</orcidid><orcidid>https://orcid.org/0000-0003-4123-7592</orcidid></search><sort><creationdate>20230413</creationdate><title>Rational Design of NiO-8YSZ Screen-Printing Slurry for High-Performance Large-Area Solid Oxide Cells</title><author>Ye, Chencheng ; Bi, Susu ; Liao, Pengfei ; Huang, Yanni ; Lin, Xiao ; Wang, Yu ; Zhang, Linjuan ; Wang, Jian-Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a280t-bc389530f5dea73f877cc14cc42d21db25e7aab1e9edc2f2b69b93ea8aa146a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>C: Energy Conversion and Storage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Chencheng</creatorcontrib><creatorcontrib>Bi, Susu</creatorcontrib><creatorcontrib>Liao, Pengfei</creatorcontrib><creatorcontrib>Huang, Yanni</creatorcontrib><creatorcontrib>Lin, Xiao</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Zhang, Linjuan</creatorcontrib><creatorcontrib>Wang, Jian-Qiang</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Chencheng</au><au>Bi, Susu</au><au>Liao, Pengfei</au><au>Huang, Yanni</au><au>Lin, Xiao</au><au>Wang, Yu</au><au>Zhang, Linjuan</au><au>Wang, Jian-Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rational Design of NiO-8YSZ Screen-Printing Slurry for High-Performance Large-Area Solid Oxide Cells</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2023-04-13</date><risdate>2023</risdate><volume>127</volume><issue>14</issue><spage>6629</spage><epage>6637</epage><pages>6629-6637</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>An efficient and stable NiO-8YSZ hydrogen electrode for solid oxide cells (SOCs) is vital in the context of increasing global intermittent renewable energy sources. Most fundamental studies of SOCs have been carried out using button cells with small active areas, whereas the screen-printing of NiO-8YSZ hydrogen electrodes required for large-area SOCs have been ignored. In this study, we provide an alternative method for designing a highly active and stable fuel electrode for SOCs application by improving the slurry dispersant effect. The dispersion states and stabilities of NiO-8YSZ screen-printing slurries were quantitatively analyzed using the instability index, relaxation time, and viscosity. Scanning electron microscopy images of the resultant films indicate that the microstructure can be improved by optimizing the dispersants within the ink. The electrochemical performance of the resulting SOCs with optimized hydrogen electrode microstructures was examined at a 5 × 5 cm2 scale (16 cm2 active area). Single cells delivered a peak power density of 0.57 W·cm–2 at 750 °C in fuel cell mode and had a high current density of −0.81 A·cm–2 at 1.30 V in electrolysis mode. These results highlight the potential for large-scale high-performance SOCs production by designing NiO-8YSZ electrode nanostructures via a proper dispersant with the stability of screen-printing paste.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.2c09021</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4704-5807</orcidid><orcidid>https://orcid.org/0000-0003-4123-7592</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2023-04, Vol.127 (14), p.6629-6637 |
issn | 1932-7447 1932-7455 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acs_jpcc_2c09021 |
source | American Chemical Society Publications |
subjects | C: Energy Conversion and Storage |
title | Rational Design of NiO-8YSZ Screen-Printing Slurry for High-Performance Large-Area Solid Oxide Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T16%3A01%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rational%20Design%20of%20NiO-8YSZ%20Screen-Printing%20Slurry%20for%20High-Performance%20Large-Area%20Solid%20Oxide%20Cells&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Ye,%20Chencheng&rft.date=2023-04-13&rft.volume=127&rft.issue=14&rft.spage=6629&rft.epage=6637&rft.pages=6629-6637&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.2c09021&rft_dat=%3Cacs_cross%3Eb969869238%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |