Dual-Atom Doping Carbon Materials as Highly Efficient Electrocatalysts for Lithium–Sulfur Batteries: Bimetallic Cooperation Mechanism

Due to the low sulfur utilization, slow battery kinetics, and shuttle effect of lithium polysulfides (LiPSs), the practical application of lithium–sulfur (Li–S) batteries is severely limited. Understanding the reaction mechanism is very important for the design and application of high-performance ba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2023-04, Vol.127 (13), p.6271-6279
Hauptverfasser: Li, Tongtong, Yu, Yangfeng, Pei, Mengying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6279
container_issue 13
container_start_page 6271
container_title Journal of physical chemistry. C
container_volume 127
creator Li, Tongtong
Yu, Yangfeng
Pei, Mengying
description Due to the low sulfur utilization, slow battery kinetics, and shuttle effect of lithium polysulfides (LiPSs), the practical application of lithium–sulfur (Li–S) batteries is severely limited. Understanding the reaction mechanism is very important for the design and application of high-performance batteries. Herein, the adsorption mechanism of LiPSs, the reaction mechanism of a battery electrode, and the catalytic decomposition of LiPSs on pristine, single-atom, and dual-atom doping C9N4 (C9N4, M/C9N4, and M1–M2/C9N4) nanosheets are comprehensively considered for the first time. Through bond length analysis, charge analysis, and energy analysis, the doping of metal atoms, especially co-doping of V and Zn atoms (Zn–V/C9N4), can greatly improve the adsorption performance of material C9N4. More importantly, Zn–V/C9N4 can significantly reduce the reaction energy barrier of the battery electrode (0.144 eV) and the decomposition energy barrier of Li2S (0.661 eV). The simulation results show that high catalytic activity depends on the unique d-orbital coupling and the ″pull″ effect of metal co-doping. These findings are crucial to understanding the role of dual-atom doping carbon materials in the design of cathode materials to cope with the performance constraints in lithium–sulfur batteries. We hope that this research idea can also be applied to other dual-atom systems.
doi_str_mv 10.1021/acs.jpcc.2c08262
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcc_2c08262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c604446616</sourcerecordid><originalsourceid>FETCH-LOGICAL-a280t-a985ce10a5a9f757779be7b1a07b1ea896c20513ec858f81385af07611d4e2523</originalsourceid><addsrcrecordid>eNp1kLFOwzAQhi0EEqWwM_oBSLGdunbY2rRQpCIGYI6uxm5dJXFkO0M3Nh6AN-RJSGjFxnJ30v3__acPoWtKRpQwegsqjHaNUiOmiGQTdoIGNEtZIsacn_7NY3GOLkLYEcJTQtMB-py3UCbT6Co8d42tNzgHv3Y1foKovYUyYAh4aTfbco8XxlhldR3xotQqeqcgQrkPMWDjPF7ZuLVt9f3x9dKWpvV4BrE_osMdntlKd9rSKpw712gP0fYpWm2htqG6RGemC9NXxz5Eb_eL13yZrJ4fHvPpKgEmSUwgk1xpSoBDZgQXQmRrLdYUSFc0yGyiGOE01UpyaSRNJQdDxITS97FmnKVDRA53lXcheG2KxtsK_L6gpOhBFh3IogdZHEF2lpuD5XfjWl93D_4v_wEkC3pw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dual-Atom Doping Carbon Materials as Highly Efficient Electrocatalysts for Lithium–Sulfur Batteries: Bimetallic Cooperation Mechanism</title><source>ACS Publications</source><creator>Li, Tongtong ; Yu, Yangfeng ; Pei, Mengying</creator><creatorcontrib>Li, Tongtong ; Yu, Yangfeng ; Pei, Mengying</creatorcontrib><description>Due to the low sulfur utilization, slow battery kinetics, and shuttle effect of lithium polysulfides (LiPSs), the practical application of lithium–sulfur (Li–S) batteries is severely limited. Understanding the reaction mechanism is very important for the design and application of high-performance batteries. Herein, the adsorption mechanism of LiPSs, the reaction mechanism of a battery electrode, and the catalytic decomposition of LiPSs on pristine, single-atom, and dual-atom doping C9N4 (C9N4, M/C9N4, and M1–M2/C9N4) nanosheets are comprehensively considered for the first time. Through bond length analysis, charge analysis, and energy analysis, the doping of metal atoms, especially co-doping of V and Zn atoms (Zn–V/C9N4), can greatly improve the adsorption performance of material C9N4. More importantly, Zn–V/C9N4 can significantly reduce the reaction energy barrier of the battery electrode (0.144 eV) and the decomposition energy barrier of Li2S (0.661 eV). The simulation results show that high catalytic activity depends on the unique d-orbital coupling and the ″pull″ effect of metal co-doping. These findings are crucial to understanding the role of dual-atom doping carbon materials in the design of cathode materials to cope with the performance constraints in lithium–sulfur batteries. We hope that this research idea can also be applied to other dual-atom systems.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.2c08262</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Chemical and Catalytic Reactivity at Interfaces</subject><ispartof>Journal of physical chemistry. C, 2023-04, Vol.127 (13), p.6271-6279</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a280t-a985ce10a5a9f757779be7b1a07b1ea896c20513ec858f81385af07611d4e2523</citedby><cites>FETCH-LOGICAL-a280t-a985ce10a5a9f757779be7b1a07b1ea896c20513ec858f81385af07611d4e2523</cites><orcidid>0000-0003-1165-1573</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.2c08262$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.2c08262$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids></links><search><creatorcontrib>Li, Tongtong</creatorcontrib><creatorcontrib>Yu, Yangfeng</creatorcontrib><creatorcontrib>Pei, Mengying</creatorcontrib><title>Dual-Atom Doping Carbon Materials as Highly Efficient Electrocatalysts for Lithium–Sulfur Batteries: Bimetallic Cooperation Mechanism</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Due to the low sulfur utilization, slow battery kinetics, and shuttle effect of lithium polysulfides (LiPSs), the practical application of lithium–sulfur (Li–S) batteries is severely limited. Understanding the reaction mechanism is very important for the design and application of high-performance batteries. Herein, the adsorption mechanism of LiPSs, the reaction mechanism of a battery electrode, and the catalytic decomposition of LiPSs on pristine, single-atom, and dual-atom doping C9N4 (C9N4, M/C9N4, and M1–M2/C9N4) nanosheets are comprehensively considered for the first time. Through bond length analysis, charge analysis, and energy analysis, the doping of metal atoms, especially co-doping of V and Zn atoms (Zn–V/C9N4), can greatly improve the adsorption performance of material C9N4. More importantly, Zn–V/C9N4 can significantly reduce the reaction energy barrier of the battery electrode (0.144 eV) and the decomposition energy barrier of Li2S (0.661 eV). The simulation results show that high catalytic activity depends on the unique d-orbital coupling and the ″pull″ effect of metal co-doping. These findings are crucial to understanding the role of dual-atom doping carbon materials in the design of cathode materials to cope with the performance constraints in lithium–sulfur batteries. We hope that this research idea can also be applied to other dual-atom systems.</description><subject>C: Chemical and Catalytic Reactivity at Interfaces</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAQhi0EEqWwM_oBSLGdunbY2rRQpCIGYI6uxm5dJXFkO0M3Nh6AN-RJSGjFxnJ30v3__acPoWtKRpQwegsqjHaNUiOmiGQTdoIGNEtZIsacn_7NY3GOLkLYEcJTQtMB-py3UCbT6Co8d42tNzgHv3Y1foKovYUyYAh4aTfbco8XxlhldR3xotQqeqcgQrkPMWDjPF7ZuLVt9f3x9dKWpvV4BrE_osMdntlKd9rSKpw712gP0fYpWm2htqG6RGemC9NXxz5Eb_eL13yZrJ4fHvPpKgEmSUwgk1xpSoBDZgQXQmRrLdYUSFc0yGyiGOE01UpyaSRNJQdDxITS97FmnKVDRA53lXcheG2KxtsK_L6gpOhBFh3IogdZHEF2lpuD5XfjWl93D_4v_wEkC3pw</recordid><startdate>20230406</startdate><enddate>20230406</enddate><creator>Li, Tongtong</creator><creator>Yu, Yangfeng</creator><creator>Pei, Mengying</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1165-1573</orcidid></search><sort><creationdate>20230406</creationdate><title>Dual-Atom Doping Carbon Materials as Highly Efficient Electrocatalysts for Lithium–Sulfur Batteries: Bimetallic Cooperation Mechanism</title><author>Li, Tongtong ; Yu, Yangfeng ; Pei, Mengying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a280t-a985ce10a5a9f757779be7b1a07b1ea896c20513ec858f81385af07611d4e2523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>C: Chemical and Catalytic Reactivity at Interfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Tongtong</creatorcontrib><creatorcontrib>Yu, Yangfeng</creatorcontrib><creatorcontrib>Pei, Mengying</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Tongtong</au><au>Yu, Yangfeng</au><au>Pei, Mengying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual-Atom Doping Carbon Materials as Highly Efficient Electrocatalysts for Lithium–Sulfur Batteries: Bimetallic Cooperation Mechanism</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2023-04-06</date><risdate>2023</risdate><volume>127</volume><issue>13</issue><spage>6271</spage><epage>6279</epage><pages>6271-6279</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Due to the low sulfur utilization, slow battery kinetics, and shuttle effect of lithium polysulfides (LiPSs), the practical application of lithium–sulfur (Li–S) batteries is severely limited. Understanding the reaction mechanism is very important for the design and application of high-performance batteries. Herein, the adsorption mechanism of LiPSs, the reaction mechanism of a battery electrode, and the catalytic decomposition of LiPSs on pristine, single-atom, and dual-atom doping C9N4 (C9N4, M/C9N4, and M1–M2/C9N4) nanosheets are comprehensively considered for the first time. Through bond length analysis, charge analysis, and energy analysis, the doping of metal atoms, especially co-doping of V and Zn atoms (Zn–V/C9N4), can greatly improve the adsorption performance of material C9N4. More importantly, Zn–V/C9N4 can significantly reduce the reaction energy barrier of the battery electrode (0.144 eV) and the decomposition energy barrier of Li2S (0.661 eV). The simulation results show that high catalytic activity depends on the unique d-orbital coupling and the ″pull″ effect of metal co-doping. These findings are crucial to understanding the role of dual-atom doping carbon materials in the design of cathode materials to cope with the performance constraints in lithium–sulfur batteries. We hope that this research idea can also be applied to other dual-atom systems.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.2c08262</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1165-1573</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2023-04, Vol.127 (13), p.6271-6279
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_acs_jpcc_2c08262
source ACS Publications
subjects C: Chemical and Catalytic Reactivity at Interfaces
title Dual-Atom Doping Carbon Materials as Highly Efficient Electrocatalysts for Lithium–Sulfur Batteries: Bimetallic Cooperation Mechanism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T19%3A12%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual-Atom%20Doping%20Carbon%20Materials%20as%20Highly%20Efficient%20Electrocatalysts%20for%20Lithium%E2%80%93Sulfur%20Batteries:%20Bimetallic%20Cooperation%20Mechanism&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Li,%20Tongtong&rft.date=2023-04-06&rft.volume=127&rft.issue=13&rft.spage=6271&rft.epage=6279&rft.pages=6271-6279&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.2c08262&rft_dat=%3Cacs_cross%3Ec604446616%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true