Origin of Magnetic Anisotropy in Nickelocene Molecular Magnet and Resilience of Its Magnetic Behavior

The robustness of nickelocene’s (NiCp2, Cp = cyclopentadienyl) magnetic anisotropy and addressability of its spin states make this molecular magnet attractive as a spin sensor. However, microscopic understanding of its magnetic anisotropy is still lacking, especially when NiCp2 is deposited on a sur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2023-02, Vol.127 (7), p.3647-3659
Hauptverfasser: Alessio, Maristella, Kotaru, Saikiran, Giudetti, Goran, Krylov, Anna I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3659
container_issue 7
container_start_page 3647
container_title Journal of physical chemistry. C
container_volume 127
creator Alessio, Maristella
Kotaru, Saikiran
Giudetti, Goran
Krylov, Anna I.
description The robustness of nickelocene’s (NiCp2, Cp = cyclopentadienyl) magnetic anisotropy and addressability of its spin states make this molecular magnet attractive as a spin sensor. However, microscopic understanding of its magnetic anisotropy is still lacking, especially when NiCp2 is deposited on a surface to make quantum sensing devices. Quantum chemical calculations of such molecule/solid-state systems are limited to density functional theory (DFT) or DFT+U (Hubbard correction to DFT). We investigate the magnetic behavior of NiCp2 using the spin-flip variant of the equation-of-motion coupled-cluster (EOM-SF-CC) method and use the EOM-SF-CC results to benchmark SF-TD-DFT. Our first-principle calculations agree well with experimentally derived magnetic anisotropy and susceptibility values. The calculations show that magnetic anisotropy in NiCp2 originates from a large spin–orbit coupling (SOC) between the triplet ground state and the third singlet state, whereas the coupling with lower singlet excited states is negligible. We also considered a set of six ring-substituted NiCp2 derivatives and a model system of the NiCp2/MgO­(001) adsorption complex, for which we used SF-TD-DFT method. To gain insight into the electronic structure of these systems, we analyze spinless transition density matrices and their natural transition orbitals (NTOs). The NTO analysis of SOCs explains how spin states and magnetic properties are retained upon modification of the NiCp2 coordination environment and upon its adsorption on a surface. Such resilience of the NiCp2 magnetic behavior supports using NiCp2 as a spin-probe molecule by functionalization of the tip of a scanning tunneling microscope.
doi_str_mv 10.1021/acs.jpcc.2c05940
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcc_2c05940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a10707270</sourcerecordid><originalsourceid>FETCH-LOGICAL-a210t-976c4a619776e23d0576c5a3c24020c4151fdb36dcd63287c223d6ac8fbdb83</originalsourceid><addsrcrecordid>eNp1kE1PwzAMhiMEEmNw55gfQIuTNO16HBMfkzYmAfcqc92RUZIp6ZD27-nYBCdOtvx-yHoYuxaQCpDi1mBM1xvEVCLoMoMTNhClkkmRaX36u2fFObuIcQ2gFQg1YLQIdmUd9w2fm5WjziIfOxt9F_xmx3vl2eIHtR7JEZ_7lnDbmnA0c-Nq_kLRtpYc0r5l2sW_pjt6N1_Wh0t21pg20tVxDtnrw_3b5CmZLR6nk_EsMVJAl5RFjpnJRVkUOUlVg-4P2iiUGUjATGjR1EuV11jnSo4KlL0pNzhqlvVypIYMDq0YfIyBmmoT7KcJu0pAtYdU9ZCqPaTqCKmP3BwiP4rfBte_97_9Gz2Va9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Origin of Magnetic Anisotropy in Nickelocene Molecular Magnet and Resilience of Its Magnetic Behavior</title><source>ACS Publications</source><creator>Alessio, Maristella ; Kotaru, Saikiran ; Giudetti, Goran ; Krylov, Anna I.</creator><creatorcontrib>Alessio, Maristella ; Kotaru, Saikiran ; Giudetti, Goran ; Krylov, Anna I.</creatorcontrib><description>The robustness of nickelocene’s (NiCp2, Cp = cyclopentadienyl) magnetic anisotropy and addressability of its spin states make this molecular magnet attractive as a spin sensor. However, microscopic understanding of its magnetic anisotropy is still lacking, especially when NiCp2 is deposited on a surface to make quantum sensing devices. Quantum chemical calculations of such molecule/solid-state systems are limited to density functional theory (DFT) or DFT+U (Hubbard correction to DFT). We investigate the magnetic behavior of NiCp2 using the spin-flip variant of the equation-of-motion coupled-cluster (EOM-SF-CC) method and use the EOM-SF-CC results to benchmark SF-TD-DFT. Our first-principle calculations agree well with experimentally derived magnetic anisotropy and susceptibility values. The calculations show that magnetic anisotropy in NiCp2 originates from a large spin–orbit coupling (SOC) between the triplet ground state and the third singlet state, whereas the coupling with lower singlet excited states is negligible. We also considered a set of six ring-substituted NiCp2 derivatives and a model system of the NiCp2/MgO­(001) adsorption complex, for which we used SF-TD-DFT method. To gain insight into the electronic structure of these systems, we analyze spinless transition density matrices and their natural transition orbitals (NTOs). The NTO analysis of SOCs explains how spin states and magnetic properties are retained upon modification of the NiCp2 coordination environment and upon its adsorption on a surface. Such resilience of the NiCp2 magnetic behavior supports using NiCp2 as a spin-probe molecule by functionalization of the tip of a scanning tunneling microscope.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.2c05940</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Physical Properties of Materials and Interfaces</subject><ispartof>Journal of physical chemistry. C, 2023-02, Vol.127 (7), p.3647-3659</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a210t-976c4a619776e23d0576c5a3c24020c4151fdb36dcd63287c223d6ac8fbdb83</citedby><cites>FETCH-LOGICAL-a210t-976c4a619776e23d0576c5a3c24020c4151fdb36dcd63287c223d6ac8fbdb83</cites><orcidid>0000-0001-6788-5016 ; 0000-0002-0663-5387 ; 0000-0003-3851-670X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.2c05940$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.2c05940$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Alessio, Maristella</creatorcontrib><creatorcontrib>Kotaru, Saikiran</creatorcontrib><creatorcontrib>Giudetti, Goran</creatorcontrib><creatorcontrib>Krylov, Anna I.</creatorcontrib><title>Origin of Magnetic Anisotropy in Nickelocene Molecular Magnet and Resilience of Its Magnetic Behavior</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>The robustness of nickelocene’s (NiCp2, Cp = cyclopentadienyl) magnetic anisotropy and addressability of its spin states make this molecular magnet attractive as a spin sensor. However, microscopic understanding of its magnetic anisotropy is still lacking, especially when NiCp2 is deposited on a surface to make quantum sensing devices. Quantum chemical calculations of such molecule/solid-state systems are limited to density functional theory (DFT) or DFT+U (Hubbard correction to DFT). We investigate the magnetic behavior of NiCp2 using the spin-flip variant of the equation-of-motion coupled-cluster (EOM-SF-CC) method and use the EOM-SF-CC results to benchmark SF-TD-DFT. Our first-principle calculations agree well with experimentally derived magnetic anisotropy and susceptibility values. The calculations show that magnetic anisotropy in NiCp2 originates from a large spin–orbit coupling (SOC) between the triplet ground state and the third singlet state, whereas the coupling with lower singlet excited states is negligible. We also considered a set of six ring-substituted NiCp2 derivatives and a model system of the NiCp2/MgO­(001) adsorption complex, for which we used SF-TD-DFT method. To gain insight into the electronic structure of these systems, we analyze spinless transition density matrices and their natural transition orbitals (NTOs). The NTO analysis of SOCs explains how spin states and magnetic properties are retained upon modification of the NiCp2 coordination environment and upon its adsorption on a surface. Such resilience of the NiCp2 magnetic behavior supports using NiCp2 as a spin-probe molecule by functionalization of the tip of a scanning tunneling microscope.</description><subject>C: Physical Properties of Materials and Interfaces</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PwzAMhiMEEmNw55gfQIuTNO16HBMfkzYmAfcqc92RUZIp6ZD27-nYBCdOtvx-yHoYuxaQCpDi1mBM1xvEVCLoMoMTNhClkkmRaX36u2fFObuIcQ2gFQg1YLQIdmUd9w2fm5WjziIfOxt9F_xmx3vl2eIHtR7JEZ_7lnDbmnA0c-Nq_kLRtpYc0r5l2sW_pjt6N1_Wh0t21pg20tVxDtnrw_3b5CmZLR6nk_EsMVJAl5RFjpnJRVkUOUlVg-4P2iiUGUjATGjR1EuV11jnSo4KlL0pNzhqlvVypIYMDq0YfIyBmmoT7KcJu0pAtYdU9ZCqPaTqCKmP3BwiP4rfBte_97_9Gz2Va9g</recordid><startdate>20230223</startdate><enddate>20230223</enddate><creator>Alessio, Maristella</creator><creator>Kotaru, Saikiran</creator><creator>Giudetti, Goran</creator><creator>Krylov, Anna I.</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6788-5016</orcidid><orcidid>https://orcid.org/0000-0002-0663-5387</orcidid><orcidid>https://orcid.org/0000-0003-3851-670X</orcidid></search><sort><creationdate>20230223</creationdate><title>Origin of Magnetic Anisotropy in Nickelocene Molecular Magnet and Resilience of Its Magnetic Behavior</title><author>Alessio, Maristella ; Kotaru, Saikiran ; Giudetti, Goran ; Krylov, Anna I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a210t-976c4a619776e23d0576c5a3c24020c4151fdb36dcd63287c223d6ac8fbdb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>C: Physical Properties of Materials and Interfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alessio, Maristella</creatorcontrib><creatorcontrib>Kotaru, Saikiran</creatorcontrib><creatorcontrib>Giudetti, Goran</creatorcontrib><creatorcontrib>Krylov, Anna I.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alessio, Maristella</au><au>Kotaru, Saikiran</au><au>Giudetti, Goran</au><au>Krylov, Anna I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Origin of Magnetic Anisotropy in Nickelocene Molecular Magnet and Resilience of Its Magnetic Behavior</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2023-02-23</date><risdate>2023</risdate><volume>127</volume><issue>7</issue><spage>3647</spage><epage>3659</epage><pages>3647-3659</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>The robustness of nickelocene’s (NiCp2, Cp = cyclopentadienyl) magnetic anisotropy and addressability of its spin states make this molecular magnet attractive as a spin sensor. However, microscopic understanding of its magnetic anisotropy is still lacking, especially when NiCp2 is deposited on a surface to make quantum sensing devices. Quantum chemical calculations of such molecule/solid-state systems are limited to density functional theory (DFT) or DFT+U (Hubbard correction to DFT). We investigate the magnetic behavior of NiCp2 using the spin-flip variant of the equation-of-motion coupled-cluster (EOM-SF-CC) method and use the EOM-SF-CC results to benchmark SF-TD-DFT. Our first-principle calculations agree well with experimentally derived magnetic anisotropy and susceptibility values. The calculations show that magnetic anisotropy in NiCp2 originates from a large spin–orbit coupling (SOC) between the triplet ground state and the third singlet state, whereas the coupling with lower singlet excited states is negligible. We also considered a set of six ring-substituted NiCp2 derivatives and a model system of the NiCp2/MgO­(001) adsorption complex, for which we used SF-TD-DFT method. To gain insight into the electronic structure of these systems, we analyze spinless transition density matrices and their natural transition orbitals (NTOs). The NTO analysis of SOCs explains how spin states and magnetic properties are retained upon modification of the NiCp2 coordination environment and upon its adsorption on a surface. Such resilience of the NiCp2 magnetic behavior supports using NiCp2 as a spin-probe molecule by functionalization of the tip of a scanning tunneling microscope.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.2c05940</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6788-5016</orcidid><orcidid>https://orcid.org/0000-0002-0663-5387</orcidid><orcidid>https://orcid.org/0000-0003-3851-670X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2023-02, Vol.127 (7), p.3647-3659
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_acs_jpcc_2c05940
source ACS Publications
subjects C: Physical Properties of Materials and Interfaces
title Origin of Magnetic Anisotropy in Nickelocene Molecular Magnet and Resilience of Its Magnetic Behavior
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A11%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Origin%20of%20Magnetic%20Anisotropy%20in%20Nickelocene%20Molecular%20Magnet%20and%20Resilience%20of%20Its%20Magnetic%20Behavior&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Alessio,%20Maristella&rft.date=2023-02-23&rft.volume=127&rft.issue=7&rft.spage=3647&rft.epage=3659&rft.pages=3647-3659&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.2c05940&rft_dat=%3Cacs_cross%3Ea10707270%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true