Understanding Quantum Interference in Molecular Devices Based on Molecular Conductance Orbitals

Electron propagation through a molecular device is determined by its quantum electronic structure. We employ molecular conductance orbitals (MCOs) to predict and interpret quantum interference (QI), which contain more information about the electrodes compared with molecular orbitals (MOs) of an isol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2022-10, Vol.126 (40), p.17424-17433
Hauptverfasser: Pan, Haoyang, Wang, Yudi, Li, Jie, Li, Shi, Hou, Shimin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17433
container_issue 40
container_start_page 17424
container_title Journal of physical chemistry. C
container_volume 126
creator Pan, Haoyang
Wang, Yudi
Li, Jie
Li, Shi
Hou, Shimin
description Electron propagation through a molecular device is determined by its quantum electronic structure. We employ molecular conductance orbitals (MCOs) to predict and interpret quantum interference (QI), which contain more information about the electrodes compared with molecular orbitals (MOs) of an isolated molecule. The phases, amplitudes, and alignment of MCOs determine whether they interfere constructively or destructively, which can be seen directly from projection transmissions and QI maps. We apply this intuitive method to butadiene, benzene, and cyclopentadienyl (Cp) anion so that we can elucidate the mechanism of QI among the whole energy range beyond the Fermi level and demonstrate the unique characteristics of MCOs.
doi_str_mv 10.1021/acs.jpcc.2c05572
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcc_2c05572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b430307333</sourcerecordid><originalsourceid>FETCH-LOGICAL-a280t-57c8149b3ece322f8aa84f37389089da63226bb531acdc195d20df0de8f257773</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKt7l_kBzpjHpMkstb4KlSLYdcgkNzJlminJjOC_N7VF3Lg6l3vuOVw-hK4pKSlh9NbYVG521pbMEiEkO0ETWnNWyEqI09-5kufoIqUNIYITyidIr4ODmAYTXBs-8NtowjBu8SIMED1ECBZwG_Br34EdOxPxA3y2FhK-Nwkc7v9a8z640eaqnFnFph1Mly7Rmc8CV0edovXT4_v8pViunhfzu2VhmCJDIaRVtKobDhY4Y14ZoyrPJVc1UbUzs7ycNY3g1FhnaS0cI84TB8ozIaXkU0QOvTb2KUXwehfbrYlfmhK9B6QzIL0HpI-AcuTmEPlx-jGG_OD_598dlGsh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Understanding Quantum Interference in Molecular Devices Based on Molecular Conductance Orbitals</title><source>American Chemical Society Journals</source><creator>Pan, Haoyang ; Wang, Yudi ; Li, Jie ; Li, Shi ; Hou, Shimin</creator><creatorcontrib>Pan, Haoyang ; Wang, Yudi ; Li, Jie ; Li, Shi ; Hou, Shimin</creatorcontrib><description>Electron propagation through a molecular device is determined by its quantum electronic structure. We employ molecular conductance orbitals (MCOs) to predict and interpret quantum interference (QI), which contain more information about the electrodes compared with molecular orbitals (MOs) of an isolated molecule. The phases, amplitudes, and alignment of MCOs determine whether they interfere constructively or destructively, which can be seen directly from projection transmissions and QI maps. We apply this intuitive method to butadiene, benzene, and cyclopentadienyl (Cp) anion so that we can elucidate the mechanism of QI among the whole energy range beyond the Fermi level and demonstrate the unique characteristics of MCOs.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.2c05572</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Physical Properties of Materials and Interfaces</subject><ispartof>Journal of physical chemistry. C, 2022-10, Vol.126 (40), p.17424-17433</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a280t-57c8149b3ece322f8aa84f37389089da63226bb531acdc195d20df0de8f257773</citedby><cites>FETCH-LOGICAL-a280t-57c8149b3ece322f8aa84f37389089da63226bb531acdc195d20df0de8f257773</cites><orcidid>0000-0002-5042-4405 ; 0000-0001-5645-6195</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.2c05572$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.2c05572$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Pan, Haoyang</creatorcontrib><creatorcontrib>Wang, Yudi</creatorcontrib><creatorcontrib>Li, Jie</creatorcontrib><creatorcontrib>Li, Shi</creatorcontrib><creatorcontrib>Hou, Shimin</creatorcontrib><title>Understanding Quantum Interference in Molecular Devices Based on Molecular Conductance Orbitals</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Electron propagation through a molecular device is determined by its quantum electronic structure. We employ molecular conductance orbitals (MCOs) to predict and interpret quantum interference (QI), which contain more information about the electrodes compared with molecular orbitals (MOs) of an isolated molecule. The phases, amplitudes, and alignment of MCOs determine whether they interfere constructively or destructively, which can be seen directly from projection transmissions and QI maps. We apply this intuitive method to butadiene, benzene, and cyclopentadienyl (Cp) anion so that we can elucidate the mechanism of QI among the whole energy range beyond the Fermi level and demonstrate the unique characteristics of MCOs.</description><subject>C: Physical Properties of Materials and Interfaces</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKt7l_kBzpjHpMkstb4KlSLYdcgkNzJlminJjOC_N7VF3Lg6l3vuOVw-hK4pKSlh9NbYVG521pbMEiEkO0ETWnNWyEqI09-5kufoIqUNIYITyidIr4ODmAYTXBs-8NtowjBu8SIMED1ECBZwG_Br34EdOxPxA3y2FhK-Nwkc7v9a8z640eaqnFnFph1Mly7Rmc8CV0edovXT4_v8pViunhfzu2VhmCJDIaRVtKobDhY4Y14ZoyrPJVc1UbUzs7ycNY3g1FhnaS0cI84TB8ozIaXkU0QOvTb2KUXwehfbrYlfmhK9B6QzIL0HpI-AcuTmEPlx-jGG_OD_598dlGsh</recordid><startdate>20221013</startdate><enddate>20221013</enddate><creator>Pan, Haoyang</creator><creator>Wang, Yudi</creator><creator>Li, Jie</creator><creator>Li, Shi</creator><creator>Hou, Shimin</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5042-4405</orcidid><orcidid>https://orcid.org/0000-0001-5645-6195</orcidid></search><sort><creationdate>20221013</creationdate><title>Understanding Quantum Interference in Molecular Devices Based on Molecular Conductance Orbitals</title><author>Pan, Haoyang ; Wang, Yudi ; Li, Jie ; Li, Shi ; Hou, Shimin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a280t-57c8149b3ece322f8aa84f37389089da63226bb531acdc195d20df0de8f257773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>C: Physical Properties of Materials and Interfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Haoyang</creatorcontrib><creatorcontrib>Wang, Yudi</creatorcontrib><creatorcontrib>Li, Jie</creatorcontrib><creatorcontrib>Li, Shi</creatorcontrib><creatorcontrib>Hou, Shimin</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Haoyang</au><au>Wang, Yudi</au><au>Li, Jie</au><au>Li, Shi</au><au>Hou, Shimin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding Quantum Interference in Molecular Devices Based on Molecular Conductance Orbitals</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2022-10-13</date><risdate>2022</risdate><volume>126</volume><issue>40</issue><spage>17424</spage><epage>17433</epage><pages>17424-17433</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Electron propagation through a molecular device is determined by its quantum electronic structure. We employ molecular conductance orbitals (MCOs) to predict and interpret quantum interference (QI), which contain more information about the electrodes compared with molecular orbitals (MOs) of an isolated molecule. The phases, amplitudes, and alignment of MCOs determine whether they interfere constructively or destructively, which can be seen directly from projection transmissions and QI maps. We apply this intuitive method to butadiene, benzene, and cyclopentadienyl (Cp) anion so that we can elucidate the mechanism of QI among the whole energy range beyond the Fermi level and demonstrate the unique characteristics of MCOs.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.2c05572</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5042-4405</orcidid><orcidid>https://orcid.org/0000-0001-5645-6195</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2022-10, Vol.126 (40), p.17424-17433
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_acs_jpcc_2c05572
source American Chemical Society Journals
subjects C: Physical Properties of Materials and Interfaces
title Understanding Quantum Interference in Molecular Devices Based on Molecular Conductance Orbitals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T03%3A13%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20Quantum%20Interference%20in%20Molecular%20Devices%20Based%20on%20Molecular%20Conductance%20Orbitals&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Pan,%20Haoyang&rft.date=2022-10-13&rft.volume=126&rft.issue=40&rft.spage=17424&rft.epage=17433&rft.pages=17424-17433&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.2c05572&rft_dat=%3Cacs_cross%3Eb430307333%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true