Understanding Quantum Interference in Molecular Devices Based on Molecular Conductance Orbitals
Electron propagation through a molecular device is determined by its quantum electronic structure. We employ molecular conductance orbitals (MCOs) to predict and interpret quantum interference (QI), which contain more information about the electrodes compared with molecular orbitals (MOs) of an isol...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2022-10, Vol.126 (40), p.17424-17433 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17433 |
---|---|
container_issue | 40 |
container_start_page | 17424 |
container_title | Journal of physical chemistry. C |
container_volume | 126 |
creator | Pan, Haoyang Wang, Yudi Li, Jie Li, Shi Hou, Shimin |
description | Electron propagation through a molecular device is determined by its quantum electronic structure. We employ molecular conductance orbitals (MCOs) to predict and interpret quantum interference (QI), which contain more information about the electrodes compared with molecular orbitals (MOs) of an isolated molecule. The phases, amplitudes, and alignment of MCOs determine whether they interfere constructively or destructively, which can be seen directly from projection transmissions and QI maps. We apply this intuitive method to butadiene, benzene, and cyclopentadienyl (Cp) anion so that we can elucidate the mechanism of QI among the whole energy range beyond the Fermi level and demonstrate the unique characteristics of MCOs. |
doi_str_mv | 10.1021/acs.jpcc.2c05572 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcc_2c05572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b430307333</sourcerecordid><originalsourceid>FETCH-LOGICAL-a280t-57c8149b3ece322f8aa84f37389089da63226bb531acdc195d20df0de8f257773</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKt7l_kBzpjHpMkstb4KlSLYdcgkNzJlminJjOC_N7VF3Lg6l3vuOVw-hK4pKSlh9NbYVG521pbMEiEkO0ETWnNWyEqI09-5kufoIqUNIYITyidIr4ODmAYTXBs-8NtowjBu8SIMED1ECBZwG_Br34EdOxPxA3y2FhK-Nwkc7v9a8z640eaqnFnFph1Mly7Rmc8CV0edovXT4_v8pViunhfzu2VhmCJDIaRVtKobDhY4Y14ZoyrPJVc1UbUzs7ycNY3g1FhnaS0cI84TB8ozIaXkU0QOvTb2KUXwehfbrYlfmhK9B6QzIL0HpI-AcuTmEPlx-jGG_OD_598dlGsh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Understanding Quantum Interference in Molecular Devices Based on Molecular Conductance Orbitals</title><source>American Chemical Society Journals</source><creator>Pan, Haoyang ; Wang, Yudi ; Li, Jie ; Li, Shi ; Hou, Shimin</creator><creatorcontrib>Pan, Haoyang ; Wang, Yudi ; Li, Jie ; Li, Shi ; Hou, Shimin</creatorcontrib><description>Electron propagation through a molecular device is determined by its quantum electronic structure. We employ molecular conductance orbitals (MCOs) to predict and interpret quantum interference (QI), which contain more information about the electrodes compared with molecular orbitals (MOs) of an isolated molecule. The phases, amplitudes, and alignment of MCOs determine whether they interfere constructively or destructively, which can be seen directly from projection transmissions and QI maps. We apply this intuitive method to butadiene, benzene, and cyclopentadienyl (Cp) anion so that we can elucidate the mechanism of QI among the whole energy range beyond the Fermi level and demonstrate the unique characteristics of MCOs.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.2c05572</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Physical Properties of Materials and Interfaces</subject><ispartof>Journal of physical chemistry. C, 2022-10, Vol.126 (40), p.17424-17433</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a280t-57c8149b3ece322f8aa84f37389089da63226bb531acdc195d20df0de8f257773</citedby><cites>FETCH-LOGICAL-a280t-57c8149b3ece322f8aa84f37389089da63226bb531acdc195d20df0de8f257773</cites><orcidid>0000-0002-5042-4405 ; 0000-0001-5645-6195</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.2c05572$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.2c05572$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Pan, Haoyang</creatorcontrib><creatorcontrib>Wang, Yudi</creatorcontrib><creatorcontrib>Li, Jie</creatorcontrib><creatorcontrib>Li, Shi</creatorcontrib><creatorcontrib>Hou, Shimin</creatorcontrib><title>Understanding Quantum Interference in Molecular Devices Based on Molecular Conductance Orbitals</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Electron propagation through a molecular device is determined by its quantum electronic structure. We employ molecular conductance orbitals (MCOs) to predict and interpret quantum interference (QI), which contain more information about the electrodes compared with molecular orbitals (MOs) of an isolated molecule. The phases, amplitudes, and alignment of MCOs determine whether they interfere constructively or destructively, which can be seen directly from projection transmissions and QI maps. We apply this intuitive method to butadiene, benzene, and cyclopentadienyl (Cp) anion so that we can elucidate the mechanism of QI among the whole energy range beyond the Fermi level and demonstrate the unique characteristics of MCOs.</description><subject>C: Physical Properties of Materials and Interfaces</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKt7l_kBzpjHpMkstb4KlSLYdcgkNzJlminJjOC_N7VF3Lg6l3vuOVw-hK4pKSlh9NbYVG521pbMEiEkO0ETWnNWyEqI09-5kufoIqUNIYITyidIr4ODmAYTXBs-8NtowjBu8SIMED1ECBZwG_Br34EdOxPxA3y2FhK-Nwkc7v9a8z640eaqnFnFph1Mly7Rmc8CV0edovXT4_v8pViunhfzu2VhmCJDIaRVtKobDhY4Y14ZoyrPJVc1UbUzs7ycNY3g1FhnaS0cI84TB8ozIaXkU0QOvTb2KUXwehfbrYlfmhK9B6QzIL0HpI-AcuTmEPlx-jGG_OD_598dlGsh</recordid><startdate>20221013</startdate><enddate>20221013</enddate><creator>Pan, Haoyang</creator><creator>Wang, Yudi</creator><creator>Li, Jie</creator><creator>Li, Shi</creator><creator>Hou, Shimin</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5042-4405</orcidid><orcidid>https://orcid.org/0000-0001-5645-6195</orcidid></search><sort><creationdate>20221013</creationdate><title>Understanding Quantum Interference in Molecular Devices Based on Molecular Conductance Orbitals</title><author>Pan, Haoyang ; Wang, Yudi ; Li, Jie ; Li, Shi ; Hou, Shimin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a280t-57c8149b3ece322f8aa84f37389089da63226bb531acdc195d20df0de8f257773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>C: Physical Properties of Materials and Interfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Haoyang</creatorcontrib><creatorcontrib>Wang, Yudi</creatorcontrib><creatorcontrib>Li, Jie</creatorcontrib><creatorcontrib>Li, Shi</creatorcontrib><creatorcontrib>Hou, Shimin</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Haoyang</au><au>Wang, Yudi</au><au>Li, Jie</au><au>Li, Shi</au><au>Hou, Shimin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding Quantum Interference in Molecular Devices Based on Molecular Conductance Orbitals</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2022-10-13</date><risdate>2022</risdate><volume>126</volume><issue>40</issue><spage>17424</spage><epage>17433</epage><pages>17424-17433</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Electron propagation through a molecular device is determined by its quantum electronic structure. We employ molecular conductance orbitals (MCOs) to predict and interpret quantum interference (QI), which contain more information about the electrodes compared with molecular orbitals (MOs) of an isolated molecule. The phases, amplitudes, and alignment of MCOs determine whether they interfere constructively or destructively, which can be seen directly from projection transmissions and QI maps. We apply this intuitive method to butadiene, benzene, and cyclopentadienyl (Cp) anion so that we can elucidate the mechanism of QI among the whole energy range beyond the Fermi level and demonstrate the unique characteristics of MCOs.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.2c05572</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5042-4405</orcidid><orcidid>https://orcid.org/0000-0001-5645-6195</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2022-10, Vol.126 (40), p.17424-17433 |
issn | 1932-7447 1932-7455 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acs_jpcc_2c05572 |
source | American Chemical Society Journals |
subjects | C: Physical Properties of Materials and Interfaces |
title | Understanding Quantum Interference in Molecular Devices Based on Molecular Conductance Orbitals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T03%3A13%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20Quantum%20Interference%20in%20Molecular%20Devices%20Based%20on%20Molecular%20Conductance%20Orbitals&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Pan,%20Haoyang&rft.date=2022-10-13&rft.volume=126&rft.issue=40&rft.spage=17424&rft.epage=17433&rft.pages=17424-17433&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.2c05572&rft_dat=%3Cacs_cross%3Eb430307333%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |