Length-Dependent Photocatalytic Activity of Hybrid Ag-CdS Nanorods

Hybrid metal–semiconductor nanostructures are promising photocatalysts for a wide span of reactions. Determining the relationship of their geometry with catalytic efficiency is critical for optimization of the catalysts. In this work, Ag-CdS nanorods with five different lengths (from 25.0 to 106.5 n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2022-09, Vol.126 (37), p.15685-15693
Hauptverfasser: Wang, Yongchen, Nyiera, Hawi N., Mureithi, Ann W., Sun, Yonglei, Mani, Tomoyasu, Zhao, Jing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15693
container_issue 37
container_start_page 15685
container_title Journal of physical chemistry. C
container_volume 126
creator Wang, Yongchen
Nyiera, Hawi N.
Mureithi, Ann W.
Sun, Yonglei
Mani, Tomoyasu
Zhao, Jing
description Hybrid metal–semiconductor nanostructures are promising photocatalysts for a wide span of reactions. Determining the relationship of their geometry with catalytic efficiency is critical for optimization of the catalysts. In this work, Ag-CdS nanorods with five different lengths (from 25.0 to 106.5 nm) have been synthesized using a seed-mediated growth method. High-resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray spectroscopy (EDS) studies confirmed that the formation of a metal tip and semiconductor body part and they absorb strongly and broadly in the UV and visible wavelength range. The nanorods have been employed as photocatalysts for methyl orange degradation and their catalytic efficiency exhibited length-dependence. Specifically, the highest efficiency was observed in the rods of intermediate length (72.1 nm). Time-dependent photoluminescence decay revealed that the Ag-CdS rods with high catalytic efficiency have a higher probability to go through charge-separation-recombination pathway than the rods with low catalytic efficiency. Understanding the physical process in these hybrid structures provides insight into fine-tuning their geometry to improve the charge transfer efficiency from the metal to the semiconductor domain. Thus, better hybrid nanomaterials can be designed and fabricated for photocatalytic and other applications.
doi_str_mv 10.1021/acs.jpcc.2c04396
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcc_2c04396</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a592416639</sourcerecordid><originalsourceid>FETCH-LOGICAL-a280t-15c396690f5c7cd876be3523c9e9c137cef3eb8f965dd3fd0f5d1379dc2d80e73</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EEqVw55gHwME_cRIfQ6AUqQIk4Bw5a7tNVeLINkh5e1JaceO0q52Z1ehD6JqSlBJGbxWEdDsApAxIxmV-gmZUcoaLTIjTvz0rztFFCFtCBCeUz9DdyvTruMH3ZjC9Nn1MXjcuOlBR7cbYQVJB7L67OCbOJsux9Z1OqjWu9VvyrHrnnQ6X6MyqXTBXxzlHH4uH93qJVy-PT3W1woqVJGIqYKqVS2IFFKDLIm8NF4yDNBIoL8BYbtrSylxoza2efHo6Sw1Ml8QUfI7I4S94F4I3thl896n82FDS7Bk0E4Nmz6A5MpgiN4fIr-K-fD8V_N_-A1qKYFs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Length-Dependent Photocatalytic Activity of Hybrid Ag-CdS Nanorods</title><source>ACS Publications</source><creator>Wang, Yongchen ; Nyiera, Hawi N. ; Mureithi, Ann W. ; Sun, Yonglei ; Mani, Tomoyasu ; Zhao, Jing</creator><creatorcontrib>Wang, Yongchen ; Nyiera, Hawi N. ; Mureithi, Ann W. ; Sun, Yonglei ; Mani, Tomoyasu ; Zhao, Jing</creatorcontrib><description>Hybrid metal–semiconductor nanostructures are promising photocatalysts for a wide span of reactions. Determining the relationship of their geometry with catalytic efficiency is critical for optimization of the catalysts. In this work, Ag-CdS nanorods with five different lengths (from 25.0 to 106.5 nm) have been synthesized using a seed-mediated growth method. High-resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray spectroscopy (EDS) studies confirmed that the formation of a metal tip and semiconductor body part and they absorb strongly and broadly in the UV and visible wavelength range. The nanorods have been employed as photocatalysts for methyl orange degradation and their catalytic efficiency exhibited length-dependence. Specifically, the highest efficiency was observed in the rods of intermediate length (72.1 nm). Time-dependent photoluminescence decay revealed that the Ag-CdS rods with high catalytic efficiency have a higher probability to go through charge-separation-recombination pathway than the rods with low catalytic efficiency. Understanding the physical process in these hybrid structures provides insight into fine-tuning their geometry to improve the charge transfer efficiency from the metal to the semiconductor domain. Thus, better hybrid nanomaterials can be designed and fabricated for photocatalytic and other applications.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.2c04396</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Chemical and Catalytic Reactivity at Interfaces</subject><ispartof>Journal of physical chemistry. C, 2022-09, Vol.126 (37), p.15685-15693</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a280t-15c396690f5c7cd876be3523c9e9c137cef3eb8f965dd3fd0f5d1379dc2d80e73</citedby><cites>FETCH-LOGICAL-a280t-15c396690f5c7cd876be3523c9e9c137cef3eb8f965dd3fd0f5d1379dc2d80e73</cites><orcidid>0000-0003-0792-2908 ; 0000-0001-6713-364X ; 0000-0002-6882-2196 ; 0000-0002-4125-5195</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.2c04396$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.2c04396$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2764,27075,27923,27924,56737,56787</link.rule.ids></links><search><creatorcontrib>Wang, Yongchen</creatorcontrib><creatorcontrib>Nyiera, Hawi N.</creatorcontrib><creatorcontrib>Mureithi, Ann W.</creatorcontrib><creatorcontrib>Sun, Yonglei</creatorcontrib><creatorcontrib>Mani, Tomoyasu</creatorcontrib><creatorcontrib>Zhao, Jing</creatorcontrib><title>Length-Dependent Photocatalytic Activity of Hybrid Ag-CdS Nanorods</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Hybrid metal–semiconductor nanostructures are promising photocatalysts for a wide span of reactions. Determining the relationship of their geometry with catalytic efficiency is critical for optimization of the catalysts. In this work, Ag-CdS nanorods with five different lengths (from 25.0 to 106.5 nm) have been synthesized using a seed-mediated growth method. High-resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray spectroscopy (EDS) studies confirmed that the formation of a metal tip and semiconductor body part and they absorb strongly and broadly in the UV and visible wavelength range. The nanorods have been employed as photocatalysts for methyl orange degradation and their catalytic efficiency exhibited length-dependence. Specifically, the highest efficiency was observed in the rods of intermediate length (72.1 nm). Time-dependent photoluminescence decay revealed that the Ag-CdS rods with high catalytic efficiency have a higher probability to go through charge-separation-recombination pathway than the rods with low catalytic efficiency. Understanding the physical process in these hybrid structures provides insight into fine-tuning their geometry to improve the charge transfer efficiency from the metal to the semiconductor domain. Thus, better hybrid nanomaterials can be designed and fabricated for photocatalytic and other applications.</description><subject>C: Chemical and Catalytic Reactivity at Interfaces</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OwzAQhC0EEqVw55gHwME_cRIfQ6AUqQIk4Bw5a7tNVeLINkh5e1JaceO0q52Z1ehD6JqSlBJGbxWEdDsApAxIxmV-gmZUcoaLTIjTvz0rztFFCFtCBCeUz9DdyvTruMH3ZjC9Nn1MXjcuOlBR7cbYQVJB7L67OCbOJsux9Z1OqjWu9VvyrHrnnQ6X6MyqXTBXxzlHH4uH93qJVy-PT3W1woqVJGIqYKqVS2IFFKDLIm8NF4yDNBIoL8BYbtrSylxoza2efHo6Sw1Ml8QUfI7I4S94F4I3thl896n82FDS7Bk0E4Nmz6A5MpgiN4fIr-K-fD8V_N_-A1qKYFs</recordid><startdate>20220922</startdate><enddate>20220922</enddate><creator>Wang, Yongchen</creator><creator>Nyiera, Hawi N.</creator><creator>Mureithi, Ann W.</creator><creator>Sun, Yonglei</creator><creator>Mani, Tomoyasu</creator><creator>Zhao, Jing</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0792-2908</orcidid><orcidid>https://orcid.org/0000-0001-6713-364X</orcidid><orcidid>https://orcid.org/0000-0002-6882-2196</orcidid><orcidid>https://orcid.org/0000-0002-4125-5195</orcidid></search><sort><creationdate>20220922</creationdate><title>Length-Dependent Photocatalytic Activity of Hybrid Ag-CdS Nanorods</title><author>Wang, Yongchen ; Nyiera, Hawi N. ; Mureithi, Ann W. ; Sun, Yonglei ; Mani, Tomoyasu ; Zhao, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a280t-15c396690f5c7cd876be3523c9e9c137cef3eb8f965dd3fd0f5d1379dc2d80e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>C: Chemical and Catalytic Reactivity at Interfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yongchen</creatorcontrib><creatorcontrib>Nyiera, Hawi N.</creatorcontrib><creatorcontrib>Mureithi, Ann W.</creatorcontrib><creatorcontrib>Sun, Yonglei</creatorcontrib><creatorcontrib>Mani, Tomoyasu</creatorcontrib><creatorcontrib>Zhao, Jing</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yongchen</au><au>Nyiera, Hawi N.</au><au>Mureithi, Ann W.</au><au>Sun, Yonglei</au><au>Mani, Tomoyasu</au><au>Zhao, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Length-Dependent Photocatalytic Activity of Hybrid Ag-CdS Nanorods</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2022-09-22</date><risdate>2022</risdate><volume>126</volume><issue>37</issue><spage>15685</spage><epage>15693</epage><pages>15685-15693</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Hybrid metal–semiconductor nanostructures are promising photocatalysts for a wide span of reactions. Determining the relationship of their geometry with catalytic efficiency is critical for optimization of the catalysts. In this work, Ag-CdS nanorods with five different lengths (from 25.0 to 106.5 nm) have been synthesized using a seed-mediated growth method. High-resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray spectroscopy (EDS) studies confirmed that the formation of a metal tip and semiconductor body part and they absorb strongly and broadly in the UV and visible wavelength range. The nanorods have been employed as photocatalysts for methyl orange degradation and their catalytic efficiency exhibited length-dependence. Specifically, the highest efficiency was observed in the rods of intermediate length (72.1 nm). Time-dependent photoluminescence decay revealed that the Ag-CdS rods with high catalytic efficiency have a higher probability to go through charge-separation-recombination pathway than the rods with low catalytic efficiency. Understanding the physical process in these hybrid structures provides insight into fine-tuning their geometry to improve the charge transfer efficiency from the metal to the semiconductor domain. Thus, better hybrid nanomaterials can be designed and fabricated for photocatalytic and other applications.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.2c04396</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0792-2908</orcidid><orcidid>https://orcid.org/0000-0001-6713-364X</orcidid><orcidid>https://orcid.org/0000-0002-6882-2196</orcidid><orcidid>https://orcid.org/0000-0002-4125-5195</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2022-09, Vol.126 (37), p.15685-15693
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_acs_jpcc_2c04396
source ACS Publications
subjects C: Chemical and Catalytic Reactivity at Interfaces
title Length-Dependent Photocatalytic Activity of Hybrid Ag-CdS Nanorods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T10%3A14%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Length-Dependent%20Photocatalytic%20Activity%20of%20Hybrid%20Ag-CdS%20Nanorods&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Wang,%20Yongchen&rft.date=2022-09-22&rft.volume=126&rft.issue=37&rft.spage=15685&rft.epage=15693&rft.pages=15685-15693&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.2c04396&rft_dat=%3Cacs_cross%3Ea592416639%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true