Molecular-Scale Elucidation of Ionic Charge Storage Mechanisms in Rechargeable Aluminum–Quinone Batteries

Rechargeable aluminum–organic batteries are of great interest as a next-generation energy storage technology because of the earth abundance, high theoretical capacity, and inherent safety of aluminum metal, coupled with the sustainability, availability, and tunabilty of organic molecules. However, t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2022-08, Vol.126 (33), p.14082-14093
Hauptverfasser: Gordon, Leo W., Jadhav, Ankur L., Miroshnikov, Mikhail, Schoetz, Theresa, John, George, Messinger, Robert J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14093
container_issue 33
container_start_page 14082
container_title Journal of physical chemistry. C
container_volume 126
creator Gordon, Leo W.
Jadhav, Ankur L.
Miroshnikov, Mikhail
Schoetz, Theresa
John, George
Messinger, Robert J.
description Rechargeable aluminum–organic batteries are of great interest as a next-generation energy storage technology because of the earth abundance, high theoretical capacity, and inherent safety of aluminum metal, coupled with the sustainability, availability, and tunabilty of organic molecules. However, the ionic charge storage mechanisms occurring in aluminum–organic batteries are currently not well understood, in part because of the diversity of possible charge-balancing cations, coupled with a wide array of possible binding modes. For the first time, we use multidimensional solid-state NMR spectroscopy in conjunction with electrochemical methods to elucidate experimentally the ionic and electronic charge storage mechanism in an aluminum–organic battery up from the atomic length scale. In doing so, we present indanthrone quinone (INDQ) as a positive electrode material for rechargeable aluminum batteries, capable of reversibly achieving specific capacities of ca. 200 mAh g–1 at 0.12 A g–1 and 100 mAh g–1 at 2.4 A g–1. We demonstrate that INDQ stores charge via reversible electrochemical enolization reactions, which are charge compensated in chloroaluminate ionic liquid electrolytes by cationic chloroaluminous (AlCl2 +) species in tetrahedral geometries. The results are generalizable to the charge storage mechanisms underpinning anthraquinone-based aluminum batteries. Lastly, the solid-state dipolar-mediated NMR experiments used here establish molecular-level interactions between electroactive ions and organic frameworks while filtering mobile electrolyte species, a methodology applicable to many multiphase host–guest systems.
doi_str_mv 10.1021/acs.jpcc.2c04272
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcc_2c04272</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c985998654</sourcerecordid><originalsourceid>FETCH-LOGICAL-a280t-ab440aa530a1e802c345f7071b1b4ff8d9399e3242c1466132d82f1589e91bb33</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqWwZ-kDkOK_NMmyVKVUaoWgsI4mrk1dEruykwU77sANOQkOrdixejN680ZPH0LXlIwoYfQWZBjt9lKOmCSCZewEDWjBWZKJND39m0V2ji5C2BGSckL5AL2vXK1kV4NP1hJqhWd1J80GWuMsdhovnDUST7fg3xRet85D1JWSW7AmNAEbi5_7LdpQxfik7hpju-b78-upM9ZZhe-gbZU3KlyiMw11UFdHHaLX-9nL9CFZPs4X08kyAZaTNoFKCAIQCwJVOWGSi1RnJKMVrYTW-abgRaE4E0xSMR5TzjY50zTNC1XQquJ8iMjhr_QuBK90ufemAf9RUlL2sMoIq-xhlUdYMXJziPw6rvM2Fvz__AcM2G93</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Molecular-Scale Elucidation of Ionic Charge Storage Mechanisms in Rechargeable Aluminum–Quinone Batteries</title><source>ACS Publications</source><creator>Gordon, Leo W. ; Jadhav, Ankur L. ; Miroshnikov, Mikhail ; Schoetz, Theresa ; John, George ; Messinger, Robert J.</creator><creatorcontrib>Gordon, Leo W. ; Jadhav, Ankur L. ; Miroshnikov, Mikhail ; Schoetz, Theresa ; John, George ; Messinger, Robert J.</creatorcontrib><description>Rechargeable aluminum–organic batteries are of great interest as a next-generation energy storage technology because of the earth abundance, high theoretical capacity, and inherent safety of aluminum metal, coupled with the sustainability, availability, and tunabilty of organic molecules. However, the ionic charge storage mechanisms occurring in aluminum–organic batteries are currently not well understood, in part because of the diversity of possible charge-balancing cations, coupled with a wide array of possible binding modes. For the first time, we use multidimensional solid-state NMR spectroscopy in conjunction with electrochemical methods to elucidate experimentally the ionic and electronic charge storage mechanism in an aluminum–organic battery up from the atomic length scale. In doing so, we present indanthrone quinone (INDQ) as a positive electrode material for rechargeable aluminum batteries, capable of reversibly achieving specific capacities of ca. 200 mAh g–1 at 0.12 A g–1 and 100 mAh g–1 at 2.4 A g–1. We demonstrate that INDQ stores charge via reversible electrochemical enolization reactions, which are charge compensated in chloroaluminate ionic liquid electrolytes by cationic chloroaluminous (AlCl2 +) species in tetrahedral geometries. The results are generalizable to the charge storage mechanisms underpinning anthraquinone-based aluminum batteries. Lastly, the solid-state dipolar-mediated NMR experiments used here establish molecular-level interactions between electroactive ions and organic frameworks while filtering mobile electrolyte species, a methodology applicable to many multiphase host–guest systems.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.2c04272</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Energy Conversion and Storage</subject><ispartof>Journal of physical chemistry. C, 2022-08, Vol.126 (33), p.14082-14093</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a280t-ab440aa530a1e802c345f7071b1b4ff8d9399e3242c1466132d82f1589e91bb33</citedby><cites>FETCH-LOGICAL-a280t-ab440aa530a1e802c345f7071b1b4ff8d9399e3242c1466132d82f1589e91bb33</cites><orcidid>0000-0002-5537-3870 ; 0000-0002-8242-9470 ; 0000-0002-0382-1256</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.2c04272$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.2c04272$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Gordon, Leo W.</creatorcontrib><creatorcontrib>Jadhav, Ankur L.</creatorcontrib><creatorcontrib>Miroshnikov, Mikhail</creatorcontrib><creatorcontrib>Schoetz, Theresa</creatorcontrib><creatorcontrib>John, George</creatorcontrib><creatorcontrib>Messinger, Robert J.</creatorcontrib><title>Molecular-Scale Elucidation of Ionic Charge Storage Mechanisms in Rechargeable Aluminum–Quinone Batteries</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Rechargeable aluminum–organic batteries are of great interest as a next-generation energy storage technology because of the earth abundance, high theoretical capacity, and inherent safety of aluminum metal, coupled with the sustainability, availability, and tunabilty of organic molecules. However, the ionic charge storage mechanisms occurring in aluminum–organic batteries are currently not well understood, in part because of the diversity of possible charge-balancing cations, coupled with a wide array of possible binding modes. For the first time, we use multidimensional solid-state NMR spectroscopy in conjunction with electrochemical methods to elucidate experimentally the ionic and electronic charge storage mechanism in an aluminum–organic battery up from the atomic length scale. In doing so, we present indanthrone quinone (INDQ) as a positive electrode material for rechargeable aluminum batteries, capable of reversibly achieving specific capacities of ca. 200 mAh g–1 at 0.12 A g–1 and 100 mAh g–1 at 2.4 A g–1. We demonstrate that INDQ stores charge via reversible electrochemical enolization reactions, which are charge compensated in chloroaluminate ionic liquid electrolytes by cationic chloroaluminous (AlCl2 +) species in tetrahedral geometries. The results are generalizable to the charge storage mechanisms underpinning anthraquinone-based aluminum batteries. Lastly, the solid-state dipolar-mediated NMR experiments used here establish molecular-level interactions between electroactive ions and organic frameworks while filtering mobile electrolyte species, a methodology applicable to many multiphase host–guest systems.</description><subject>C: Energy Conversion and Storage</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhS0EEqWwZ-kDkOK_NMmyVKVUaoWgsI4mrk1dEruykwU77sANOQkOrdixejN680ZPH0LXlIwoYfQWZBjt9lKOmCSCZewEDWjBWZKJND39m0V2ji5C2BGSckL5AL2vXK1kV4NP1hJqhWd1J80GWuMsdhovnDUST7fg3xRet85D1JWSW7AmNAEbi5_7LdpQxfik7hpju-b78-upM9ZZhe-gbZU3KlyiMw11UFdHHaLX-9nL9CFZPs4X08kyAZaTNoFKCAIQCwJVOWGSi1RnJKMVrYTW-abgRaE4E0xSMR5TzjY50zTNC1XQquJ8iMjhr_QuBK90ufemAf9RUlL2sMoIq-xhlUdYMXJziPw6rvM2Fvz__AcM2G93</recordid><startdate>20220825</startdate><enddate>20220825</enddate><creator>Gordon, Leo W.</creator><creator>Jadhav, Ankur L.</creator><creator>Miroshnikov, Mikhail</creator><creator>Schoetz, Theresa</creator><creator>John, George</creator><creator>Messinger, Robert J.</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5537-3870</orcidid><orcidid>https://orcid.org/0000-0002-8242-9470</orcidid><orcidid>https://orcid.org/0000-0002-0382-1256</orcidid></search><sort><creationdate>20220825</creationdate><title>Molecular-Scale Elucidation of Ionic Charge Storage Mechanisms in Rechargeable Aluminum–Quinone Batteries</title><author>Gordon, Leo W. ; Jadhav, Ankur L. ; Miroshnikov, Mikhail ; Schoetz, Theresa ; John, George ; Messinger, Robert J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a280t-ab440aa530a1e802c345f7071b1b4ff8d9399e3242c1466132d82f1589e91bb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>C: Energy Conversion and Storage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gordon, Leo W.</creatorcontrib><creatorcontrib>Jadhav, Ankur L.</creatorcontrib><creatorcontrib>Miroshnikov, Mikhail</creatorcontrib><creatorcontrib>Schoetz, Theresa</creatorcontrib><creatorcontrib>John, George</creatorcontrib><creatorcontrib>Messinger, Robert J.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gordon, Leo W.</au><au>Jadhav, Ankur L.</au><au>Miroshnikov, Mikhail</au><au>Schoetz, Theresa</au><au>John, George</au><au>Messinger, Robert J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular-Scale Elucidation of Ionic Charge Storage Mechanisms in Rechargeable Aluminum–Quinone Batteries</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2022-08-25</date><risdate>2022</risdate><volume>126</volume><issue>33</issue><spage>14082</spage><epage>14093</epage><pages>14082-14093</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Rechargeable aluminum–organic batteries are of great interest as a next-generation energy storage technology because of the earth abundance, high theoretical capacity, and inherent safety of aluminum metal, coupled with the sustainability, availability, and tunabilty of organic molecules. However, the ionic charge storage mechanisms occurring in aluminum–organic batteries are currently not well understood, in part because of the diversity of possible charge-balancing cations, coupled with a wide array of possible binding modes. For the first time, we use multidimensional solid-state NMR spectroscopy in conjunction with electrochemical methods to elucidate experimentally the ionic and electronic charge storage mechanism in an aluminum–organic battery up from the atomic length scale. In doing so, we present indanthrone quinone (INDQ) as a positive electrode material for rechargeable aluminum batteries, capable of reversibly achieving specific capacities of ca. 200 mAh g–1 at 0.12 A g–1 and 100 mAh g–1 at 2.4 A g–1. We demonstrate that INDQ stores charge via reversible electrochemical enolization reactions, which are charge compensated in chloroaluminate ionic liquid electrolytes by cationic chloroaluminous (AlCl2 +) species in tetrahedral geometries. The results are generalizable to the charge storage mechanisms underpinning anthraquinone-based aluminum batteries. Lastly, the solid-state dipolar-mediated NMR experiments used here establish molecular-level interactions between electroactive ions and organic frameworks while filtering mobile electrolyte species, a methodology applicable to many multiphase host–guest systems.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.2c04272</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5537-3870</orcidid><orcidid>https://orcid.org/0000-0002-8242-9470</orcidid><orcidid>https://orcid.org/0000-0002-0382-1256</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2022-08, Vol.126 (33), p.14082-14093
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_acs_jpcc_2c04272
source ACS Publications
subjects C: Energy Conversion and Storage
title Molecular-Scale Elucidation of Ionic Charge Storage Mechanisms in Rechargeable Aluminum–Quinone Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A20%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular-Scale%20Elucidation%20of%20Ionic%20Charge%20Storage%20Mechanisms%20in%20Rechargeable%20Aluminum%E2%80%93Quinone%20Batteries&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Gordon,%20Leo%20W.&rft.date=2022-08-25&rft.volume=126&rft.issue=33&rft.spage=14082&rft.epage=14093&rft.pages=14082-14093&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.2c04272&rft_dat=%3Cacs_cross%3Ec985998654%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true