Micro-to-Nano Bimodal Single-Particle Sensing Using Optical Tweezers

Recently, electrical sensing techniques for single objects, such as nanoparticles, biomolecules, and viruses, have attracted a great deal of attention. To achieve both high throughput and high measurement accuracy, target objects need to be quickly transported to a small sensing section embedded in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2022-07, Vol.126 (26), p.10713-10721
Hauptverfasser: Doi, Kentaro, Yamamoto, Kyohei, Yamazaki, Hiroki, Kawano, Satoyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10721
container_issue 26
container_start_page 10713
container_title Journal of physical chemistry. C
container_volume 126
creator Doi, Kentaro
Yamamoto, Kyohei
Yamazaki, Hiroki
Kawano, Satoyuki
description Recently, electrical sensing techniques for single objects, such as nanoparticles, biomolecules, and viruses, have attracted a great deal of attention. To achieve both high throughput and high measurement accuracy, target objects need to be quickly transported to a small sensing section embedded in a fluidic channel. In the present study, we propose a novel method to improve the signal-to-noise (S/N) ratio of electrical signals of single particles, using optical tweezers and a microchannel. Optically trapping a 2 μm microparticle in a micro-orifice that has a comparable dimension of 3.0 μm (W), 2.5 μm (H), and 3.0 μm (L), the electrical signal from a small target particle that passes by the microparticle is sharpened and separated from the background noise. By irradiation with near-infrared light, the micro-orifice can be switched between opening and closing by optical tweezers, which works effectively to bring target particles to the sensing section using liquid flows and electrophoretic transport. As a result, the S/N ratio of electrical sensing of the smaller particle is improved by a factor of 5. The present microfluidic chip enables us to electrically detect particles of several hundreds of nanometers. Based on the present method, identification of single nanoparticles will also be feasible by using machine learning in the near future.
doi_str_mv 10.1021/acs.jpcc.2c00593
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcc_2c00593</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b983323111</sourcerecordid><originalsourceid>FETCH-LOGICAL-a388t-c47414ecf530c1478cd62f272cdfe69a8c05ede5dc80096c1232f38d1e3a63dc3</originalsourceid><addsrcrecordid>eNp1UMtOwzAQtBBIlMKdYz4AB7-SOEcoFJAKRWp7tqz1GqVKk8oOQvD1uA9x47K7mp3ZHQ0h15zlnAl-ayHm6y1ALoCxopYnZMRrKWiliuL0b1bVObmIcZ0oknE5Ig-vDYSeDj19s12f3Teb3tk2WzTdR4v03YahgRazBXYxQdlqX-fbhCbW8gvxB0O8JGfethGvjn1MVtPH5eSZzuZPL5O7GbVS64GCqhRXCD79Bq4qDa4UXlQCnMeythpYgQ4LB5qxugQupPBSO47SltKBHBN2uJssxxjQm21oNjZ8G87MLgWTUjC7FMwxhSS5OUj2m_4zdMng__RfEfBg6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Micro-to-Nano Bimodal Single-Particle Sensing Using Optical Tweezers</title><source>ACS Publications</source><creator>Doi, Kentaro ; Yamamoto, Kyohei ; Yamazaki, Hiroki ; Kawano, Satoyuki</creator><creatorcontrib>Doi, Kentaro ; Yamamoto, Kyohei ; Yamazaki, Hiroki ; Kawano, Satoyuki</creatorcontrib><description>Recently, electrical sensing techniques for single objects, such as nanoparticles, biomolecules, and viruses, have attracted a great deal of attention. To achieve both high throughput and high measurement accuracy, target objects need to be quickly transported to a small sensing section embedded in a fluidic channel. In the present study, we propose a novel method to improve the signal-to-noise (S/N) ratio of electrical signals of single particles, using optical tweezers and a microchannel. Optically trapping a 2 μm microparticle in a micro-orifice that has a comparable dimension of 3.0 μm (W), 2.5 μm (H), and 3.0 μm (L), the electrical signal from a small target particle that passes by the microparticle is sharpened and separated from the background noise. By irradiation with near-infrared light, the micro-orifice can be switched between opening and closing by optical tweezers, which works effectively to bring target particles to the sensing section using liquid flows and electrophoretic transport. As a result, the S/N ratio of electrical sensing of the smaller particle is improved by a factor of 5. The present microfluidic chip enables us to electrically detect particles of several hundreds of nanometers. Based on the present method, identification of single nanoparticles will also be feasible by using machine learning in the near future.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.2c00593</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Spectroscopy and Dynamics of Nano, Hybrid, and Low-Dimensional Materials</subject><ispartof>Journal of physical chemistry. C, 2022-07, Vol.126 (26), p.10713-10721</ispartof><rights>2022 The Authors. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a388t-c47414ecf530c1478cd62f272cdfe69a8c05ede5dc80096c1232f38d1e3a63dc3</citedby><cites>FETCH-LOGICAL-a388t-c47414ecf530c1478cd62f272cdfe69a8c05ede5dc80096c1232f38d1e3a63dc3</cites><orcidid>0000-0002-2663-9369</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.2c00593$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.2c00593$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Doi, Kentaro</creatorcontrib><creatorcontrib>Yamamoto, Kyohei</creatorcontrib><creatorcontrib>Yamazaki, Hiroki</creatorcontrib><creatorcontrib>Kawano, Satoyuki</creatorcontrib><title>Micro-to-Nano Bimodal Single-Particle Sensing Using Optical Tweezers</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Recently, electrical sensing techniques for single objects, such as nanoparticles, biomolecules, and viruses, have attracted a great deal of attention. To achieve both high throughput and high measurement accuracy, target objects need to be quickly transported to a small sensing section embedded in a fluidic channel. In the present study, we propose a novel method to improve the signal-to-noise (S/N) ratio of electrical signals of single particles, using optical tweezers and a microchannel. Optically trapping a 2 μm microparticle in a micro-orifice that has a comparable dimension of 3.0 μm (W), 2.5 μm (H), and 3.0 μm (L), the electrical signal from a small target particle that passes by the microparticle is sharpened and separated from the background noise. By irradiation with near-infrared light, the micro-orifice can be switched between opening and closing by optical tweezers, which works effectively to bring target particles to the sensing section using liquid flows and electrophoretic transport. As a result, the S/N ratio of electrical sensing of the smaller particle is improved by a factor of 5. The present microfluidic chip enables us to electrically detect particles of several hundreds of nanometers. Based on the present method, identification of single nanoparticles will also be feasible by using machine learning in the near future.</description><subject>C: Spectroscopy and Dynamics of Nano, Hybrid, and Low-Dimensional Materials</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1UMtOwzAQtBBIlMKdYz4AB7-SOEcoFJAKRWp7tqz1GqVKk8oOQvD1uA9x47K7mp3ZHQ0h15zlnAl-ayHm6y1ALoCxopYnZMRrKWiliuL0b1bVObmIcZ0oknE5Ig-vDYSeDj19s12f3Teb3tk2WzTdR4v03YahgRazBXYxQdlqX-fbhCbW8gvxB0O8JGfethGvjn1MVtPH5eSZzuZPL5O7GbVS64GCqhRXCD79Bq4qDa4UXlQCnMeythpYgQ4LB5qxugQupPBSO47SltKBHBN2uJssxxjQm21oNjZ8G87MLgWTUjC7FMwxhSS5OUj2m_4zdMng__RfEfBg6Q</recordid><startdate>20220707</startdate><enddate>20220707</enddate><creator>Doi, Kentaro</creator><creator>Yamamoto, Kyohei</creator><creator>Yamazaki, Hiroki</creator><creator>Kawano, Satoyuki</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2663-9369</orcidid></search><sort><creationdate>20220707</creationdate><title>Micro-to-Nano Bimodal Single-Particle Sensing Using Optical Tweezers</title><author>Doi, Kentaro ; Yamamoto, Kyohei ; Yamazaki, Hiroki ; Kawano, Satoyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a388t-c47414ecf530c1478cd62f272cdfe69a8c05ede5dc80096c1232f38d1e3a63dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>C: Spectroscopy and Dynamics of Nano, Hybrid, and Low-Dimensional Materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Doi, Kentaro</creatorcontrib><creatorcontrib>Yamamoto, Kyohei</creatorcontrib><creatorcontrib>Yamazaki, Hiroki</creatorcontrib><creatorcontrib>Kawano, Satoyuki</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Doi, Kentaro</au><au>Yamamoto, Kyohei</au><au>Yamazaki, Hiroki</au><au>Kawano, Satoyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Micro-to-Nano Bimodal Single-Particle Sensing Using Optical Tweezers</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2022-07-07</date><risdate>2022</risdate><volume>126</volume><issue>26</issue><spage>10713</spage><epage>10721</epage><pages>10713-10721</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Recently, electrical sensing techniques for single objects, such as nanoparticles, biomolecules, and viruses, have attracted a great deal of attention. To achieve both high throughput and high measurement accuracy, target objects need to be quickly transported to a small sensing section embedded in a fluidic channel. In the present study, we propose a novel method to improve the signal-to-noise (S/N) ratio of electrical signals of single particles, using optical tweezers and a microchannel. Optically trapping a 2 μm microparticle in a micro-orifice that has a comparable dimension of 3.0 μm (W), 2.5 μm (H), and 3.0 μm (L), the electrical signal from a small target particle that passes by the microparticle is sharpened and separated from the background noise. By irradiation with near-infrared light, the micro-orifice can be switched between opening and closing by optical tweezers, which works effectively to bring target particles to the sensing section using liquid flows and electrophoretic transport. As a result, the S/N ratio of electrical sensing of the smaller particle is improved by a factor of 5. The present microfluidic chip enables us to electrically detect particles of several hundreds of nanometers. Based on the present method, identification of single nanoparticles will also be feasible by using machine learning in the near future.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.2c00593</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2663-9369</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2022-07, Vol.126 (26), p.10713-10721
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_acs_jpcc_2c00593
source ACS Publications
subjects C: Spectroscopy and Dynamics of Nano, Hybrid, and Low-Dimensional Materials
title Micro-to-Nano Bimodal Single-Particle Sensing Using Optical Tweezers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A43%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Micro-to-Nano%20Bimodal%20Single-Particle%20Sensing%20Using%20Optical%20Tweezers&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Doi,%20Kentaro&rft.date=2022-07-07&rft.volume=126&rft.issue=26&rft.spage=10713&rft.epage=10721&rft.pages=10713-10721&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.2c00593&rft_dat=%3Cacs_cross%3Eb983323111%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true