Temperature-Jump Spectroscopy of Gold–Poly(N‑isopropylacrylamide) Core–Shell Microgels

The collapse dynamics of gold–poly­(N-isopropylacrylamide) core–shell microgels were measured by capacitor-discharge temperature-jump spectroscopy. Using a series of temperature jumps from 31 °C up to 38.9 °C, we could monitor a characteristic two-component volume phase transition by changes in opti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2022-03, Vol.126 (8), p.4118-4131
Hauptverfasser: Tadgell, Ben, Ponomareva, Ekaterina, Karg, Matthias, Mulvaney, Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4131
container_issue 8
container_start_page 4118
container_title Journal of physical chemistry. C
container_volume 126
creator Tadgell, Ben
Ponomareva, Ekaterina
Karg, Matthias
Mulvaney, Paul
description The collapse dynamics of gold–poly­(N-isopropylacrylamide) core–shell microgels were measured by capacitor-discharge temperature-jump spectroscopy. Using a series of temperature jumps from 31 °C up to 38.9 °C, we could monitor a characteristic two-component volume phase transition by changes in optical density that occurred on a time scale of milliseconds. Kinetic data were compared for microgels over a range of polymer shell thicknesses and cross-linker densities. We show that the fast component of the two-component collapse is consistent with the rapid contraction of the loosely cross-linked outer corona of the polymeric microgel, where the polymer density is lowest. The slow component corresponds to subsequent rearrangement of the polymer chains. The lifetime of the fast component scales linearly with the overall change in microgel radius, and the dynamics are consistent with the collapse of long polymer chains in the outer corona. The lifetime of the slow polymer rearrangement is almost constant over all the tested parameters. The relative contribution of the slow component to the overall change in optical density is largest when the initial and final states of the transition are closer to the fully collapsed state of the microgels. The relative contribution of the fast component is largest when the microgel is initially more swollen.
doi_str_mv 10.1021/acs.jpcc.2c00062
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcc_2c00062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a590323320</sourcerecordid><originalsourceid>FETCH-LOGICAL-a280t-bfd43edcc4a928e67d8443bb02cd9c6d821a397a043790b29d025cc9af3203c13</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKt3j3tUcOvkY7uboxStSv2A1puwZCdZ3ZI1S9IeeutfEP9hf4mpFW9eZgbe950ZHkJOKQwoMHqpMAzmHeKAIQAM2R7pUclZmoss2_-bRX5IjkKYA2QcKO-R15lpO-PVYulNer9su2TaGVx4F9B1q8TVydhZvVl_PTu7OnvcrD-b4DofNavQx9I22pwnI-dNNE3fjbXJQ4PevRkbjslBrWwwJ7-9T15urmej23TyNL4bXU1SxQpYpFWtBTcaUSjJCjPMdSEErypgqCUOdcGo4jJXIHguoWJSA8sQpao5A46U9wns9sa7IXhTl51vWuVXJYVyS6eMdMotnfKXToxc7CI_ilv6j_jg__Zv02NtVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Temperature-Jump Spectroscopy of Gold–Poly(N‑isopropylacrylamide) Core–Shell Microgels</title><source>ACS Publications</source><creator>Tadgell, Ben ; Ponomareva, Ekaterina ; Karg, Matthias ; Mulvaney, Paul</creator><creatorcontrib>Tadgell, Ben ; Ponomareva, Ekaterina ; Karg, Matthias ; Mulvaney, Paul</creatorcontrib><description>The collapse dynamics of gold–poly­(N-isopropylacrylamide) core–shell microgels were measured by capacitor-discharge temperature-jump spectroscopy. Using a series of temperature jumps from 31 °C up to 38.9 °C, we could monitor a characteristic two-component volume phase transition by changes in optical density that occurred on a time scale of milliseconds. Kinetic data were compared for microgels over a range of polymer shell thicknesses and cross-linker densities. We show that the fast component of the two-component collapse is consistent with the rapid contraction of the loosely cross-linked outer corona of the polymeric microgel, where the polymer density is lowest. The slow component corresponds to subsequent rearrangement of the polymer chains. The lifetime of the fast component scales linearly with the overall change in microgel radius, and the dynamics are consistent with the collapse of long polymer chains in the outer corona. The lifetime of the slow polymer rearrangement is almost constant over all the tested parameters. The relative contribution of the slow component to the overall change in optical density is largest when the initial and final states of the transition are closer to the fully collapsed state of the microgels. The relative contribution of the fast component is largest when the microgel is initially more swollen.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.2c00062</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Spectroscopy and Dynamics of Nano, Hybrid, and Low-Dimensional Materials</subject><ispartof>Journal of physical chemistry. C, 2022-03, Vol.126 (8), p.4118-4131</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a280t-bfd43edcc4a928e67d8443bb02cd9c6d821a397a043790b29d025cc9af3203c13</citedby><cites>FETCH-LOGICAL-a280t-bfd43edcc4a928e67d8443bb02cd9c6d821a397a043790b29d025cc9af3203c13</cites><orcidid>0000-0002-8007-3247 ; 0000-0002-6247-3976</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.2c00062$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.2c00062$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Tadgell, Ben</creatorcontrib><creatorcontrib>Ponomareva, Ekaterina</creatorcontrib><creatorcontrib>Karg, Matthias</creatorcontrib><creatorcontrib>Mulvaney, Paul</creatorcontrib><title>Temperature-Jump Spectroscopy of Gold–Poly(N‑isopropylacrylamide) Core–Shell Microgels</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>The collapse dynamics of gold–poly­(N-isopropylacrylamide) core–shell microgels were measured by capacitor-discharge temperature-jump spectroscopy. Using a series of temperature jumps from 31 °C up to 38.9 °C, we could monitor a characteristic two-component volume phase transition by changes in optical density that occurred on a time scale of milliseconds. Kinetic data were compared for microgels over a range of polymer shell thicknesses and cross-linker densities. We show that the fast component of the two-component collapse is consistent with the rapid contraction of the loosely cross-linked outer corona of the polymeric microgel, where the polymer density is lowest. The slow component corresponds to subsequent rearrangement of the polymer chains. The lifetime of the fast component scales linearly with the overall change in microgel radius, and the dynamics are consistent with the collapse of long polymer chains in the outer corona. The lifetime of the slow polymer rearrangement is almost constant over all the tested parameters. The relative contribution of the slow component to the overall change in optical density is largest when the initial and final states of the transition are closer to the fully collapsed state of the microgels. The relative contribution of the fast component is largest when the microgel is initially more swollen.</description><subject>C: Spectroscopy and Dynamics of Nano, Hybrid, and Low-Dimensional Materials</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKt3j3tUcOvkY7uboxStSv2A1puwZCdZ3ZI1S9IeeutfEP9hf4mpFW9eZgbe950ZHkJOKQwoMHqpMAzmHeKAIQAM2R7pUclZmoss2_-bRX5IjkKYA2QcKO-R15lpO-PVYulNer9su2TaGVx4F9B1q8TVydhZvVl_PTu7OnvcrD-b4DofNavQx9I22pwnI-dNNE3fjbXJQ4PevRkbjslBrWwwJ7-9T15urmej23TyNL4bXU1SxQpYpFWtBTcaUSjJCjPMdSEErypgqCUOdcGo4jJXIHguoWJSA8sQpao5A46U9wns9sa7IXhTl51vWuVXJYVyS6eMdMotnfKXToxc7CI_ilv6j_jg__Zv02NtVQ</recordid><startdate>20220303</startdate><enddate>20220303</enddate><creator>Tadgell, Ben</creator><creator>Ponomareva, Ekaterina</creator><creator>Karg, Matthias</creator><creator>Mulvaney, Paul</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8007-3247</orcidid><orcidid>https://orcid.org/0000-0002-6247-3976</orcidid></search><sort><creationdate>20220303</creationdate><title>Temperature-Jump Spectroscopy of Gold–Poly(N‑isopropylacrylamide) Core–Shell Microgels</title><author>Tadgell, Ben ; Ponomareva, Ekaterina ; Karg, Matthias ; Mulvaney, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a280t-bfd43edcc4a928e67d8443bb02cd9c6d821a397a043790b29d025cc9af3203c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>C: Spectroscopy and Dynamics of Nano, Hybrid, and Low-Dimensional Materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tadgell, Ben</creatorcontrib><creatorcontrib>Ponomareva, Ekaterina</creatorcontrib><creatorcontrib>Karg, Matthias</creatorcontrib><creatorcontrib>Mulvaney, Paul</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tadgell, Ben</au><au>Ponomareva, Ekaterina</au><au>Karg, Matthias</au><au>Mulvaney, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature-Jump Spectroscopy of Gold–Poly(N‑isopropylacrylamide) Core–Shell Microgels</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2022-03-03</date><risdate>2022</risdate><volume>126</volume><issue>8</issue><spage>4118</spage><epage>4131</epage><pages>4118-4131</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>The collapse dynamics of gold–poly­(N-isopropylacrylamide) core–shell microgels were measured by capacitor-discharge temperature-jump spectroscopy. Using a series of temperature jumps from 31 °C up to 38.9 °C, we could monitor a characteristic two-component volume phase transition by changes in optical density that occurred on a time scale of milliseconds. Kinetic data were compared for microgels over a range of polymer shell thicknesses and cross-linker densities. We show that the fast component of the two-component collapse is consistent with the rapid contraction of the loosely cross-linked outer corona of the polymeric microgel, where the polymer density is lowest. The slow component corresponds to subsequent rearrangement of the polymer chains. The lifetime of the fast component scales linearly with the overall change in microgel radius, and the dynamics are consistent with the collapse of long polymer chains in the outer corona. The lifetime of the slow polymer rearrangement is almost constant over all the tested parameters. The relative contribution of the slow component to the overall change in optical density is largest when the initial and final states of the transition are closer to the fully collapsed state of the microgels. The relative contribution of the fast component is largest when the microgel is initially more swollen.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.2c00062</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8007-3247</orcidid><orcidid>https://orcid.org/0000-0002-6247-3976</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2022-03, Vol.126 (8), p.4118-4131
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_acs_jpcc_2c00062
source ACS Publications
subjects C: Spectroscopy and Dynamics of Nano, Hybrid, and Low-Dimensional Materials
title Temperature-Jump Spectroscopy of Gold–Poly(N‑isopropylacrylamide) Core–Shell Microgels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T10%3A19%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature-Jump%20Spectroscopy%20of%20Gold%E2%80%93Poly(N%E2%80%91isopropylacrylamide)%20Core%E2%80%93Shell%20Microgels&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Tadgell,%20Ben&rft.date=2022-03-03&rft.volume=126&rft.issue=8&rft.spage=4118&rft.epage=4131&rft.pages=4118-4131&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.2c00062&rft_dat=%3Cacs_cross%3Ea590323320%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true