Toward Stable High-Performance Tin Halide Perovskite: First-Principles Insights into the Incorporation of Bivalent Dopants

Tin vacancy in CsSnI3 is a major issue that hinders halide perovskite solar cell performance stability and because of its increased p-type dopant concentration, changes its metallicity and hinders its recombination. To overcome this issue, we propose a bivalent dopant (i.e., Ca and Mn) in CsSnI3, ac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2022-03, Vol.126 (11), p.5256-5264
Hauptverfasser: Irham, Muhammad Alief, Tejo Baskoro, Fakhrian Hanif, Permatasari, Fitri Aulia, Iskandar, Ferry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5264
container_issue 11
container_start_page 5256
container_title Journal of physical chemistry. C
container_volume 126
creator Irham, Muhammad Alief
Tejo Baskoro, Fakhrian Hanif
Permatasari, Fitri Aulia
Iskandar, Ferry
description Tin vacancy in CsSnI3 is a major issue that hinders halide perovskite solar cell performance stability and because of its increased p-type dopant concentration, changes its metallicity and hinders its recombination. To overcome this issue, we propose a bivalent dopant (i.e., Ca and Mn) in CsSnI3, acting as an electron donor. Here, we demonstrate by the first-principles study that bivalent dopants could boost CsSnI3 stability by their n-doped behavior and increased structural integrity. Ca and Mn substitution on α-CsSnI3 formation energy shows that these dopants will fill the vacancy position and prevent any tin vacancy formation in CsSnI3. In doped CsSnI3, the band gap was modulated by hybridization between the bivalent dopant and halide. The n-type behavior of the bivalent dopant shifts the Fermi level up, which will prevent self-p-doped behavior. Through the Shockley–Queisser equation, band gap modulation shows that the bivalent dopant increases solar cell performances. Our work shows that the bivalent dopant will stabilize and modulate the CsSnI3 structure to result in high-performance solar cells.
doi_str_mv 10.1021/acs.jpcc.1c10315
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcc_1c10315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c746927879</sourcerecordid><originalsourceid>FETCH-LOGICAL-a2310-523c6bc9ec5bd497b5ed7486526539baa6a790073feaa7553cdcb807cdf3d9ce3</originalsourceid><addsrcrecordid>eNp1kMFOwzAMhiMEEmNw55gHoCNpmmblBoOxSUhMYpwr101ZRpdUSRiCp6djEzdOtn77s6yPkEvORpyl_BowjNYd4ogjZ4LLIzLghUgTlUl5_Ndn6pSchbBmTArGxYB8L90n-Jq-RKhaTWfmbZUstG-c34BFTZfG0hm0pta0j902vJuob-jU-BCThTcWTdfqQOc29GgM1NjoaFzpPkHnO-chGmepa-id2UKrbaT3rgMbwzk5aaAN-uJQh-R1-rCczJKn58f55PYpgVRwlshUYF5hoVFWdVaoSupaZeNcprkURQWQgyoYU6LRAEpKgTVWY6awbkRdoBZDwvZ30bsQvG7KzpsN-K-Ss3LnruzdlTt35cFdj1ztkd-J-_C2f_D_9R97DXVp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Toward Stable High-Performance Tin Halide Perovskite: First-Principles Insights into the Incorporation of Bivalent Dopants</title><source>American Chemical Society Publications</source><creator>Irham, Muhammad Alief ; Tejo Baskoro, Fakhrian Hanif ; Permatasari, Fitri Aulia ; Iskandar, Ferry</creator><creatorcontrib>Irham, Muhammad Alief ; Tejo Baskoro, Fakhrian Hanif ; Permatasari, Fitri Aulia ; Iskandar, Ferry</creatorcontrib><description>Tin vacancy in CsSnI3 is a major issue that hinders halide perovskite solar cell performance stability and because of its increased p-type dopant concentration, changes its metallicity and hinders its recombination. To overcome this issue, we propose a bivalent dopant (i.e., Ca and Mn) in CsSnI3, acting as an electron donor. Here, we demonstrate by the first-principles study that bivalent dopants could boost CsSnI3 stability by their n-doped behavior and increased structural integrity. Ca and Mn substitution on α-CsSnI3 formation energy shows that these dopants will fill the vacancy position and prevent any tin vacancy formation in CsSnI3. In doped CsSnI3, the band gap was modulated by hybridization between the bivalent dopant and halide. The n-type behavior of the bivalent dopant shifts the Fermi level up, which will prevent self-p-doped behavior. Through the Shockley–Queisser equation, band gap modulation shows that the bivalent dopant increases solar cell performances. Our work shows that the bivalent dopant will stabilize and modulate the CsSnI3 structure to result in high-performance solar cells.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.1c10315</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Physical Properties of Materials and Interfaces</subject><ispartof>Journal of physical chemistry. C, 2022-03, Vol.126 (11), p.5256-5264</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a2310-523c6bc9ec5bd497b5ed7486526539baa6a790073feaa7553cdcb807cdf3d9ce3</citedby><cites>FETCH-LOGICAL-a2310-523c6bc9ec5bd497b5ed7486526539baa6a790073feaa7553cdcb807cdf3d9ce3</cites><orcidid>0000-0001-8317-8696 ; 0000-0002-0464-0035 ; 0000-0001-6557-6885 ; 0000-0002-3228-8307</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.1c10315$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.1c10315$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Irham, Muhammad Alief</creatorcontrib><creatorcontrib>Tejo Baskoro, Fakhrian Hanif</creatorcontrib><creatorcontrib>Permatasari, Fitri Aulia</creatorcontrib><creatorcontrib>Iskandar, Ferry</creatorcontrib><title>Toward Stable High-Performance Tin Halide Perovskite: First-Principles Insights into the Incorporation of Bivalent Dopants</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Tin vacancy in CsSnI3 is a major issue that hinders halide perovskite solar cell performance stability and because of its increased p-type dopant concentration, changes its metallicity and hinders its recombination. To overcome this issue, we propose a bivalent dopant (i.e., Ca and Mn) in CsSnI3, acting as an electron donor. Here, we demonstrate by the first-principles study that bivalent dopants could boost CsSnI3 stability by their n-doped behavior and increased structural integrity. Ca and Mn substitution on α-CsSnI3 formation energy shows that these dopants will fill the vacancy position and prevent any tin vacancy formation in CsSnI3. In doped CsSnI3, the band gap was modulated by hybridization between the bivalent dopant and halide. The n-type behavior of the bivalent dopant shifts the Fermi level up, which will prevent self-p-doped behavior. Through the Shockley–Queisser equation, band gap modulation shows that the bivalent dopant increases solar cell performances. Our work shows that the bivalent dopant will stabilize and modulate the CsSnI3 structure to result in high-performance solar cells.</description><subject>C: Physical Properties of Materials and Interfaces</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kMFOwzAMhiMEEmNw55gHoCNpmmblBoOxSUhMYpwr101ZRpdUSRiCp6djEzdOtn77s6yPkEvORpyl_BowjNYd4ogjZ4LLIzLghUgTlUl5_Ndn6pSchbBmTArGxYB8L90n-Jq-RKhaTWfmbZUstG-c34BFTZfG0hm0pta0j902vJuob-jU-BCThTcWTdfqQOc29GgM1NjoaFzpPkHnO-chGmepa-id2UKrbaT3rgMbwzk5aaAN-uJQh-R1-rCczJKn58f55PYpgVRwlshUYF5hoVFWdVaoSupaZeNcprkURQWQgyoYU6LRAEpKgTVWY6awbkRdoBZDwvZ30bsQvG7KzpsN-K-Ss3LnruzdlTt35cFdj1ztkd-J-_C2f_D_9R97DXVp</recordid><startdate>20220324</startdate><enddate>20220324</enddate><creator>Irham, Muhammad Alief</creator><creator>Tejo Baskoro, Fakhrian Hanif</creator><creator>Permatasari, Fitri Aulia</creator><creator>Iskandar, Ferry</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8317-8696</orcidid><orcidid>https://orcid.org/0000-0002-0464-0035</orcidid><orcidid>https://orcid.org/0000-0001-6557-6885</orcidid><orcidid>https://orcid.org/0000-0002-3228-8307</orcidid></search><sort><creationdate>20220324</creationdate><title>Toward Stable High-Performance Tin Halide Perovskite: First-Principles Insights into the Incorporation of Bivalent Dopants</title><author>Irham, Muhammad Alief ; Tejo Baskoro, Fakhrian Hanif ; Permatasari, Fitri Aulia ; Iskandar, Ferry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a2310-523c6bc9ec5bd497b5ed7486526539baa6a790073feaa7553cdcb807cdf3d9ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>C: Physical Properties of Materials and Interfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Irham, Muhammad Alief</creatorcontrib><creatorcontrib>Tejo Baskoro, Fakhrian Hanif</creatorcontrib><creatorcontrib>Permatasari, Fitri Aulia</creatorcontrib><creatorcontrib>Iskandar, Ferry</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Irham, Muhammad Alief</au><au>Tejo Baskoro, Fakhrian Hanif</au><au>Permatasari, Fitri Aulia</au><au>Iskandar, Ferry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward Stable High-Performance Tin Halide Perovskite: First-Principles Insights into the Incorporation of Bivalent Dopants</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2022-03-24</date><risdate>2022</risdate><volume>126</volume><issue>11</issue><spage>5256</spage><epage>5264</epage><pages>5256-5264</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Tin vacancy in CsSnI3 is a major issue that hinders halide perovskite solar cell performance stability and because of its increased p-type dopant concentration, changes its metallicity and hinders its recombination. To overcome this issue, we propose a bivalent dopant (i.e., Ca and Mn) in CsSnI3, acting as an electron donor. Here, we demonstrate by the first-principles study that bivalent dopants could boost CsSnI3 stability by their n-doped behavior and increased structural integrity. Ca and Mn substitution on α-CsSnI3 formation energy shows that these dopants will fill the vacancy position and prevent any tin vacancy formation in CsSnI3. In doped CsSnI3, the band gap was modulated by hybridization between the bivalent dopant and halide. The n-type behavior of the bivalent dopant shifts the Fermi level up, which will prevent self-p-doped behavior. Through the Shockley–Queisser equation, band gap modulation shows that the bivalent dopant increases solar cell performances. Our work shows that the bivalent dopant will stabilize and modulate the CsSnI3 structure to result in high-performance solar cells.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.1c10315</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8317-8696</orcidid><orcidid>https://orcid.org/0000-0002-0464-0035</orcidid><orcidid>https://orcid.org/0000-0001-6557-6885</orcidid><orcidid>https://orcid.org/0000-0002-3228-8307</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2022-03, Vol.126 (11), p.5256-5264
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_acs_jpcc_1c10315
source American Chemical Society Publications
subjects C: Physical Properties of Materials and Interfaces
title Toward Stable High-Performance Tin Halide Perovskite: First-Principles Insights into the Incorporation of Bivalent Dopants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A39%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20Stable%20High-Performance%20Tin%20Halide%20Perovskite:%20First-Principles%20Insights%20into%20the%20Incorporation%20of%20Bivalent%20Dopants&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Irham,%20Muhammad%20Alief&rft.date=2022-03-24&rft.volume=126&rft.issue=11&rft.spage=5256&rft.epage=5264&rft.pages=5256-5264&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.1c10315&rft_dat=%3Cacs_cross%3Ec746927879%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true