How Heteroatom Substitution in Donor–Acceptor Copolymers Affects Excitonic and Charge Photogeneration Processes in Organic Photovoltaic Cells

Recent attention has been drawn to expanding the class of polymer-based OPV materials through heteroatom substitution within the repeating units in the main chain of a polymer backbone. We sought to investigate how heteroatom substitution within a donor–acceptor copolymer causes such large variation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2021-12, Vol.125 (48), p.26590-26600
Hauptverfasser: Gallaher, Joseph K, Pugliese, Silvina N, Uddin, Mohammad Afsar, Lee, Tack Ho, Kim, Jin Young, Woo, Han Young, Hodgkiss, Justin M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 26600
container_issue 48
container_start_page 26590
container_title Journal of physical chemistry. C
container_volume 125
creator Gallaher, Joseph K
Pugliese, Silvina N
Uddin, Mohammad Afsar
Lee, Tack Ho
Kim, Jin Young
Woo, Han Young
Hodgkiss, Justin M
description Recent attention has been drawn to expanding the class of polymer-based OPV materials through heteroatom substitution within the repeating units in the main chain of a polymer backbone. We sought to investigate how heteroatom substitution within a donor–acceptor copolymer causes such large variations in the photovoltaic parameters, which cannot be explained considering the variations in the optical band gap alone. Our study applies broadband transient absorption spectroscopy to a series of low-band gap copolymers, wherein the S-position of the benzothiadiazole in the parent polymer structure is substituted for an oxygen (i.e., benzooxadiazole) and selenium (i.e., benzoselenadiazole). Our thin-film morphology measurements reveal unfavorable packing of the oxygen- and selenium-containing polymers near the interfaces with [6,6]-phenyl-C71-butyric acid methyl ester (PCBM) or in intermixed regions. We explain the device performance differences based upon a sub-optimal blend morphology, resulting in suppressed dissociation of charge-transfer states and, concomitantly, high geminate recombination rates for these systems. Furthermore, the heavy-atom effect of the selenium-containing polymer facilitates access to the triplet manifold. We find that triplet state formation can initially be circumvented by fast charge photogeneration in the finely intermixed morphology of the polymer:PCBM blend; however, this morphology also prevents charge dissociation and ultimately results in recombination to form triplet exciton states. These results provide valuable insights into how heteroatom substitutions affect the thin-film morphology and severe photocurrent loss pathways in polymer solar cells.
doi_str_mv 10.1021/acs.jpcc.1c07641
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcc_1c07641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>g49077454</sourcerecordid><originalsourceid>FETCH-LOGICAL-a280t-ad9525703aa85c2a344f777ef61a8ae7d9d7faf9c8e169ebcc4bb8850b738df13</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhSMEEqWwZ-kDkGLnp06WVfgpUqVWAtbRxBm3qdJMZLtAd9yABTfkJCRtxY7VzGjee3r6PO9a8JHggbgFZUfrVqmRUFyOI3HiDUQaBr6M4vj0b4_kuXdh7ZrzOOQiHHhfU3pnU3RoCBxt2PO2sK5yW1dRw6qG3VFD5ufze6IUto4My6ilerdBY9lEa1TOsvsPVTlqKsWgKVm2ArNEtliRoyU2aGCftTCk0Fq0fercLKHX70VvVDvojgzr2l56Zxpqi1fHOfReH-5fsqk_mz8-ZZOZD0HCnQ9lGgex5CFAEqsAwijSUkrUYwEJoCzTUmrQqUpQjFMslIqKIkliXsgwKbUIhx4_5CpD1hrUeWuqDZhdLnjeA807oHkPND8C7Sw3B8v-Q1vTdAX_l_8CPpl_bA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>How Heteroatom Substitution in Donor–Acceptor Copolymers Affects Excitonic and Charge Photogeneration Processes in Organic Photovoltaic Cells</title><source>ACS Publications</source><creator>Gallaher, Joseph K ; Pugliese, Silvina N ; Uddin, Mohammad Afsar ; Lee, Tack Ho ; Kim, Jin Young ; Woo, Han Young ; Hodgkiss, Justin M</creator><creatorcontrib>Gallaher, Joseph K ; Pugliese, Silvina N ; Uddin, Mohammad Afsar ; Lee, Tack Ho ; Kim, Jin Young ; Woo, Han Young ; Hodgkiss, Justin M</creatorcontrib><description>Recent attention has been drawn to expanding the class of polymer-based OPV materials through heteroatom substitution within the repeating units in the main chain of a polymer backbone. We sought to investigate how heteroatom substitution within a donor–acceptor copolymer causes such large variations in the photovoltaic parameters, which cannot be explained considering the variations in the optical band gap alone. Our study applies broadband transient absorption spectroscopy to a series of low-band gap copolymers, wherein the S-position of the benzothiadiazole in the parent polymer structure is substituted for an oxygen (i.e., benzooxadiazole) and selenium (i.e., benzoselenadiazole). Our thin-film morphology measurements reveal unfavorable packing of the oxygen- and selenium-containing polymers near the interfaces with [6,6]-phenyl-C71-butyric acid methyl ester (PCBM) or in intermixed regions. We explain the device performance differences based upon a sub-optimal blend morphology, resulting in suppressed dissociation of charge-transfer states and, concomitantly, high geminate recombination rates for these systems. Furthermore, the heavy-atom effect of the selenium-containing polymer facilitates access to the triplet manifold. We find that triplet state formation can initially be circumvented by fast charge photogeneration in the finely intermixed morphology of the polymer:PCBM blend; however, this morphology also prevents charge dissociation and ultimately results in recombination to form triplet exciton states. These results provide valuable insights into how heteroatom substitutions affect the thin-film morphology and severe photocurrent loss pathways in polymer solar cells.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.1c07641</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Spectroscopy and Dynamics of Nano, Hybrid, and Low-Dimensional Materials</subject><ispartof>Journal of physical chemistry. C, 2021-12, Vol.125 (48), p.26590-26600</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a280t-ad9525703aa85c2a344f777ef61a8ae7d9d7faf9c8e169ebcc4bb8850b738df13</citedby><cites>FETCH-LOGICAL-a280t-ad9525703aa85c2a344f777ef61a8ae7d9d7faf9c8e169ebcc4bb8850b738df13</cites><orcidid>0000-0002-6595-4468 ; 0000-0002-9629-8213 ; 0000-0001-5650-7482 ; 0000-0003-3435-6374 ; 0000-0002-3217-5513</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.1c07641$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.1c07641$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,2754,27059,27907,27908,56721,56771</link.rule.ids></links><search><creatorcontrib>Gallaher, Joseph K</creatorcontrib><creatorcontrib>Pugliese, Silvina N</creatorcontrib><creatorcontrib>Uddin, Mohammad Afsar</creatorcontrib><creatorcontrib>Lee, Tack Ho</creatorcontrib><creatorcontrib>Kim, Jin Young</creatorcontrib><creatorcontrib>Woo, Han Young</creatorcontrib><creatorcontrib>Hodgkiss, Justin M</creatorcontrib><title>How Heteroatom Substitution in Donor–Acceptor Copolymers Affects Excitonic and Charge Photogeneration Processes in Organic Photovoltaic Cells</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Recent attention has been drawn to expanding the class of polymer-based OPV materials through heteroatom substitution within the repeating units in the main chain of a polymer backbone. We sought to investigate how heteroatom substitution within a donor–acceptor copolymer causes such large variations in the photovoltaic parameters, which cannot be explained considering the variations in the optical band gap alone. Our study applies broadband transient absorption spectroscopy to a series of low-band gap copolymers, wherein the S-position of the benzothiadiazole in the parent polymer structure is substituted for an oxygen (i.e., benzooxadiazole) and selenium (i.e., benzoselenadiazole). Our thin-film morphology measurements reveal unfavorable packing of the oxygen- and selenium-containing polymers near the interfaces with [6,6]-phenyl-C71-butyric acid methyl ester (PCBM) or in intermixed regions. We explain the device performance differences based upon a sub-optimal blend morphology, resulting in suppressed dissociation of charge-transfer states and, concomitantly, high geminate recombination rates for these systems. Furthermore, the heavy-atom effect of the selenium-containing polymer facilitates access to the triplet manifold. We find that triplet state formation can initially be circumvented by fast charge photogeneration in the finely intermixed morphology of the polymer:PCBM blend; however, this morphology also prevents charge dissociation and ultimately results in recombination to form triplet exciton states. These results provide valuable insights into how heteroatom substitutions affect the thin-film morphology and severe photocurrent loss pathways in polymer solar cells.</description><subject>C: Spectroscopy and Dynamics of Nano, Hybrid, and Low-Dimensional Materials</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhSMEEqWwZ-kDkGLnp06WVfgpUqVWAtbRxBm3qdJMZLtAd9yABTfkJCRtxY7VzGjee3r6PO9a8JHggbgFZUfrVqmRUFyOI3HiDUQaBr6M4vj0b4_kuXdh7ZrzOOQiHHhfU3pnU3RoCBxt2PO2sK5yW1dRw6qG3VFD5ufze6IUto4My6ilerdBY9lEa1TOsvsPVTlqKsWgKVm2ArNEtliRoyU2aGCftTCk0Fq0fercLKHX70VvVDvojgzr2l56Zxpqi1fHOfReH-5fsqk_mz8-ZZOZD0HCnQ9lGgex5CFAEqsAwijSUkrUYwEJoCzTUmrQqUpQjFMslIqKIkliXsgwKbUIhx4_5CpD1hrUeWuqDZhdLnjeA807oHkPND8C7Sw3B8v-Q1vTdAX_l_8CPpl_bA</recordid><startdate>20211209</startdate><enddate>20211209</enddate><creator>Gallaher, Joseph K</creator><creator>Pugliese, Silvina N</creator><creator>Uddin, Mohammad Afsar</creator><creator>Lee, Tack Ho</creator><creator>Kim, Jin Young</creator><creator>Woo, Han Young</creator><creator>Hodgkiss, Justin M</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6595-4468</orcidid><orcidid>https://orcid.org/0000-0002-9629-8213</orcidid><orcidid>https://orcid.org/0000-0001-5650-7482</orcidid><orcidid>https://orcid.org/0000-0003-3435-6374</orcidid><orcidid>https://orcid.org/0000-0002-3217-5513</orcidid></search><sort><creationdate>20211209</creationdate><title>How Heteroatom Substitution in Donor–Acceptor Copolymers Affects Excitonic and Charge Photogeneration Processes in Organic Photovoltaic Cells</title><author>Gallaher, Joseph K ; Pugliese, Silvina N ; Uddin, Mohammad Afsar ; Lee, Tack Ho ; Kim, Jin Young ; Woo, Han Young ; Hodgkiss, Justin M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a280t-ad9525703aa85c2a344f777ef61a8ae7d9d7faf9c8e169ebcc4bb8850b738df13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>C: Spectroscopy and Dynamics of Nano, Hybrid, and Low-Dimensional Materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gallaher, Joseph K</creatorcontrib><creatorcontrib>Pugliese, Silvina N</creatorcontrib><creatorcontrib>Uddin, Mohammad Afsar</creatorcontrib><creatorcontrib>Lee, Tack Ho</creatorcontrib><creatorcontrib>Kim, Jin Young</creatorcontrib><creatorcontrib>Woo, Han Young</creatorcontrib><creatorcontrib>Hodgkiss, Justin M</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gallaher, Joseph K</au><au>Pugliese, Silvina N</au><au>Uddin, Mohammad Afsar</au><au>Lee, Tack Ho</au><au>Kim, Jin Young</au><au>Woo, Han Young</au><au>Hodgkiss, Justin M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How Heteroatom Substitution in Donor–Acceptor Copolymers Affects Excitonic and Charge Photogeneration Processes in Organic Photovoltaic Cells</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2021-12-09</date><risdate>2021</risdate><volume>125</volume><issue>48</issue><spage>26590</spage><epage>26600</epage><pages>26590-26600</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Recent attention has been drawn to expanding the class of polymer-based OPV materials through heteroatom substitution within the repeating units in the main chain of a polymer backbone. We sought to investigate how heteroatom substitution within a donor–acceptor copolymer causes such large variations in the photovoltaic parameters, which cannot be explained considering the variations in the optical band gap alone. Our study applies broadband transient absorption spectroscopy to a series of low-band gap copolymers, wherein the S-position of the benzothiadiazole in the parent polymer structure is substituted for an oxygen (i.e., benzooxadiazole) and selenium (i.e., benzoselenadiazole). Our thin-film morphology measurements reveal unfavorable packing of the oxygen- and selenium-containing polymers near the interfaces with [6,6]-phenyl-C71-butyric acid methyl ester (PCBM) or in intermixed regions. We explain the device performance differences based upon a sub-optimal blend morphology, resulting in suppressed dissociation of charge-transfer states and, concomitantly, high geminate recombination rates for these systems. Furthermore, the heavy-atom effect of the selenium-containing polymer facilitates access to the triplet manifold. We find that triplet state formation can initially be circumvented by fast charge photogeneration in the finely intermixed morphology of the polymer:PCBM blend; however, this morphology also prevents charge dissociation and ultimately results in recombination to form triplet exciton states. These results provide valuable insights into how heteroatom substitutions affect the thin-film morphology and severe photocurrent loss pathways in polymer solar cells.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.1c07641</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6595-4468</orcidid><orcidid>https://orcid.org/0000-0002-9629-8213</orcidid><orcidid>https://orcid.org/0000-0001-5650-7482</orcidid><orcidid>https://orcid.org/0000-0003-3435-6374</orcidid><orcidid>https://orcid.org/0000-0002-3217-5513</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2021-12, Vol.125 (48), p.26590-26600
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_acs_jpcc_1c07641
source ACS Publications
subjects C: Spectroscopy and Dynamics of Nano, Hybrid, and Low-Dimensional Materials
title How Heteroatom Substitution in Donor–Acceptor Copolymers Affects Excitonic and Charge Photogeneration Processes in Organic Photovoltaic Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T19%3A59%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20Heteroatom%20Substitution%20in%20Donor%E2%80%93Acceptor%20Copolymers%20Affects%20Excitonic%20and%20Charge%20Photogeneration%20Processes%20in%20Organic%20Photovoltaic%20Cells&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Gallaher,%20Joseph%20K&rft.date=2021-12-09&rft.volume=125&rft.issue=48&rft.spage=26590&rft.epage=26600&rft.pages=26590-26600&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.1c07641&rft_dat=%3Cacs_cross%3Eg49077454%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true