Combining Metal Nanoparticles with an Ir(III) Photosensitizer

We report on a new photocatalytic system that consists of an iridium-based photosensitizer that has been encapsulated into the pores of the metal–organic framework (MOF) MIL-101, which have then been loaded with metal nanoparticles. Loading with Ni leads to substantially increased photocatalytic hyd...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2021-11, Vol.125 (46), p.25765-25773
Hauptverfasser: Hammon, Sebastian, Klarner, Mara, Hörner, Gerald, Weber, Birgit, Friedrich, Martin, Senker, Jürgen, Kempe, Rhett, Branquinho de Queiroz, Thiago, Kümmel, Stephan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25773
container_issue 46
container_start_page 25765
container_title Journal of physical chemistry. C
container_volume 125
creator Hammon, Sebastian
Klarner, Mara
Hörner, Gerald
Weber, Birgit
Friedrich, Martin
Senker, Jürgen
Kempe, Rhett
Branquinho de Queiroz, Thiago
Kümmel, Stephan
description We report on a new photocatalytic system that consists of an iridium-based photosensitizer that has been encapsulated into the pores of the metal–organic framework (MOF) MIL-101, which have then been loaded with metal nanoparticles. Loading with Ni leads to substantially increased photocatalytic hydrogen evolution rates, whereas loading with Pt and Pd leads to only a small increase or none at all, respectively. These experimental findings triggered us to theoretically study the combination of the photosensitizer and metal cluster in detail. Time-dependent density functional theory calculations with an optimally tuned range-separated hybrid functional show that the optical excitations of systems, in which the iridium-based photosensitizer is combined with a metal cluster, involve a pronounced charge transfer from the metal to the photosensitizer. Density functional calculations show that the binding energy between the photosensitizer and the metal cluster is considerably larger for Ni than for Pd and Pt.
doi_str_mv 10.1021/acs.jpcc.1c05756
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcc_1c05756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a683784163</sourcerecordid><originalsourceid>FETCH-LOGICAL-a233t-bc28e2e4ac4c308b2d77f45a1b3421ebcb2b8a6147884b9170c02990a6f5e8283</originalsourceid><addsrcrecordid>eNp1j0tLxDAURoMoOI7uXWapYGueTbpwIcVHYXwsdB2SmDoZOk1JIqK_3o4zuHP1XfjuudwDwClGJUYEX2qbytVobYkt4oJXe2CGa0oKwTjf_5uZOARHKa0Q4hRhOgNXTVgbP_jhHT64rHv4qIcw6pi97V2Cnz4voR5gG8_atj2Hz8uQQ3JD8tl_u3gMDjrdJ3eyyzl4vb15ae6LxdNd21wvCk0ozYWxRDrimLbMUiQNeROiY1xjQxnBzlhDjNQVZkJKZmoskEWkrpGuOu4kkXQO0PaujSGl6Do1Rr_W8UthpDb6atJXG32105-Qiy3y24SPOEwP_r_-A9CaXbc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Combining Metal Nanoparticles with an Ir(III) Photosensitizer</title><source>ACS Publications</source><creator>Hammon, Sebastian ; Klarner, Mara ; Hörner, Gerald ; Weber, Birgit ; Friedrich, Martin ; Senker, Jürgen ; Kempe, Rhett ; Branquinho de Queiroz, Thiago ; Kümmel, Stephan</creator><creatorcontrib>Hammon, Sebastian ; Klarner, Mara ; Hörner, Gerald ; Weber, Birgit ; Friedrich, Martin ; Senker, Jürgen ; Kempe, Rhett ; Branquinho de Queiroz, Thiago ; Kümmel, Stephan</creatorcontrib><description>We report on a new photocatalytic system that consists of an iridium-based photosensitizer that has been encapsulated into the pores of the metal–organic framework (MOF) MIL-101, which have then been loaded with metal nanoparticles. Loading with Ni leads to substantially increased photocatalytic hydrogen evolution rates, whereas loading with Pt and Pd leads to only a small increase or none at all, respectively. These experimental findings triggered us to theoretically study the combination of the photosensitizer and metal cluster in detail. Time-dependent density functional theory calculations with an optimally tuned range-separated hybrid functional show that the optical excitations of systems, in which the iridium-based photosensitizer is combined with a metal cluster, involve a pronounced charge transfer from the metal to the photosensitizer. Density functional calculations show that the binding energy between the photosensitizer and the metal cluster is considerably larger for Ni than for Pd and Pt.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.1c05756</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Physical Properties of Materials and Interfaces</subject><ispartof>Journal of physical chemistry. C, 2021-11, Vol.125 (46), p.25765-25773</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a233t-bc28e2e4ac4c308b2d77f45a1b3421ebcb2b8a6147884b9170c02990a6f5e8283</cites><orcidid>0000-0002-9138-4155 ; 0000-0001-5914-6635 ; 0000-0003-3775-954X ; 0000-0002-3883-2879 ; 0000-0002-9861-9447 ; 0000-0002-7278-7952</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.1c05756$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.1c05756$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Hammon, Sebastian</creatorcontrib><creatorcontrib>Klarner, Mara</creatorcontrib><creatorcontrib>Hörner, Gerald</creatorcontrib><creatorcontrib>Weber, Birgit</creatorcontrib><creatorcontrib>Friedrich, Martin</creatorcontrib><creatorcontrib>Senker, Jürgen</creatorcontrib><creatorcontrib>Kempe, Rhett</creatorcontrib><creatorcontrib>Branquinho de Queiroz, Thiago</creatorcontrib><creatorcontrib>Kümmel, Stephan</creatorcontrib><title>Combining Metal Nanoparticles with an Ir(III) Photosensitizer</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>We report on a new photocatalytic system that consists of an iridium-based photosensitizer that has been encapsulated into the pores of the metal–organic framework (MOF) MIL-101, which have then been loaded with metal nanoparticles. Loading with Ni leads to substantially increased photocatalytic hydrogen evolution rates, whereas loading with Pt and Pd leads to only a small increase or none at all, respectively. These experimental findings triggered us to theoretically study the combination of the photosensitizer and metal cluster in detail. Time-dependent density functional theory calculations with an optimally tuned range-separated hybrid functional show that the optical excitations of systems, in which the iridium-based photosensitizer is combined with a metal cluster, involve a pronounced charge transfer from the metal to the photosensitizer. Density functional calculations show that the binding energy between the photosensitizer and the metal cluster is considerably larger for Ni than for Pd and Pt.</description><subject>C: Physical Properties of Materials and Interfaces</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1j0tLxDAURoMoOI7uXWapYGueTbpwIcVHYXwsdB2SmDoZOk1JIqK_3o4zuHP1XfjuudwDwClGJUYEX2qbytVobYkt4oJXe2CGa0oKwTjf_5uZOARHKa0Q4hRhOgNXTVgbP_jhHT64rHv4qIcw6pi97V2Cnz4voR5gG8_atj2Hz8uQQ3JD8tl_u3gMDjrdJ3eyyzl4vb15ae6LxdNd21wvCk0ozYWxRDrimLbMUiQNeROiY1xjQxnBzlhDjNQVZkJKZmoskEWkrpGuOu4kkXQO0PaujSGl6Do1Rr_W8UthpDb6atJXG32105-Qiy3y24SPOEwP_r_-A9CaXbc</recordid><startdate>20211125</startdate><enddate>20211125</enddate><creator>Hammon, Sebastian</creator><creator>Klarner, Mara</creator><creator>Hörner, Gerald</creator><creator>Weber, Birgit</creator><creator>Friedrich, Martin</creator><creator>Senker, Jürgen</creator><creator>Kempe, Rhett</creator><creator>Branquinho de Queiroz, Thiago</creator><creator>Kümmel, Stephan</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9138-4155</orcidid><orcidid>https://orcid.org/0000-0001-5914-6635</orcidid><orcidid>https://orcid.org/0000-0003-3775-954X</orcidid><orcidid>https://orcid.org/0000-0002-3883-2879</orcidid><orcidid>https://orcid.org/0000-0002-9861-9447</orcidid><orcidid>https://orcid.org/0000-0002-7278-7952</orcidid></search><sort><creationdate>20211125</creationdate><title>Combining Metal Nanoparticles with an Ir(III) Photosensitizer</title><author>Hammon, Sebastian ; Klarner, Mara ; Hörner, Gerald ; Weber, Birgit ; Friedrich, Martin ; Senker, Jürgen ; Kempe, Rhett ; Branquinho de Queiroz, Thiago ; Kümmel, Stephan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a233t-bc28e2e4ac4c308b2d77f45a1b3421ebcb2b8a6147884b9170c02990a6f5e8283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>C: Physical Properties of Materials and Interfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hammon, Sebastian</creatorcontrib><creatorcontrib>Klarner, Mara</creatorcontrib><creatorcontrib>Hörner, Gerald</creatorcontrib><creatorcontrib>Weber, Birgit</creatorcontrib><creatorcontrib>Friedrich, Martin</creatorcontrib><creatorcontrib>Senker, Jürgen</creatorcontrib><creatorcontrib>Kempe, Rhett</creatorcontrib><creatorcontrib>Branquinho de Queiroz, Thiago</creatorcontrib><creatorcontrib>Kümmel, Stephan</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hammon, Sebastian</au><au>Klarner, Mara</au><au>Hörner, Gerald</au><au>Weber, Birgit</au><au>Friedrich, Martin</au><au>Senker, Jürgen</au><au>Kempe, Rhett</au><au>Branquinho de Queiroz, Thiago</au><au>Kümmel, Stephan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining Metal Nanoparticles with an Ir(III) Photosensitizer</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2021-11-25</date><risdate>2021</risdate><volume>125</volume><issue>46</issue><spage>25765</spage><epage>25773</epage><pages>25765-25773</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>We report on a new photocatalytic system that consists of an iridium-based photosensitizer that has been encapsulated into the pores of the metal–organic framework (MOF) MIL-101, which have then been loaded with metal nanoparticles. Loading with Ni leads to substantially increased photocatalytic hydrogen evolution rates, whereas loading with Pt and Pd leads to only a small increase or none at all, respectively. These experimental findings triggered us to theoretically study the combination of the photosensitizer and metal cluster in detail. Time-dependent density functional theory calculations with an optimally tuned range-separated hybrid functional show that the optical excitations of systems, in which the iridium-based photosensitizer is combined with a metal cluster, involve a pronounced charge transfer from the metal to the photosensitizer. Density functional calculations show that the binding energy between the photosensitizer and the metal cluster is considerably larger for Ni than for Pd and Pt.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.1c05756</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9138-4155</orcidid><orcidid>https://orcid.org/0000-0001-5914-6635</orcidid><orcidid>https://orcid.org/0000-0003-3775-954X</orcidid><orcidid>https://orcid.org/0000-0002-3883-2879</orcidid><orcidid>https://orcid.org/0000-0002-9861-9447</orcidid><orcidid>https://orcid.org/0000-0002-7278-7952</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2021-11, Vol.125 (46), p.25765-25773
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_acs_jpcc_1c05756
source ACS Publications
subjects C: Physical Properties of Materials and Interfaces
title Combining Metal Nanoparticles with an Ir(III) Photosensitizer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T21%3A40%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20Metal%20Nanoparticles%20with%20an%20Ir(III)%20Photosensitizer&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Hammon,%20Sebastian&rft.date=2021-11-25&rft.volume=125&rft.issue=46&rft.spage=25765&rft.epage=25773&rft.pages=25765-25773&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.1c05756&rft_dat=%3Cacs_cross%3Ea683784163%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true