Solvents Hinder the Interlocking Rotation between Molecular Gears, as Revealed by Torque Calculations

Molecular motors offer promising applications in the fields of nanodevices and nanofluidics. It is thus highly relevant to study their practical operation processes in fluids. In this work, we adopted the torque approach based on quantum mechanical-calculated results to explicitly demonstrate that l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2021-08, Vol.125 (32), p.17612-17621
Hauptverfasser: Ahmed, Syed Bilal, Ullah, Naeem, Zhao, Yanling, Zhang, Ruiqin, Van Hove, Michel A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17621
container_issue 32
container_start_page 17612
container_title Journal of physical chemistry. C
container_volume 125
creator Ahmed, Syed Bilal
Ullah, Naeem
Zhao, Yanling
Zhang, Ruiqin
Van Hove, Michel A
description Molecular motors offer promising applications in the fields of nanodevices and nanofluidics. It is thus highly relevant to study their practical operation processes in fluids. In this work, we adopted the torque approach based on quantum mechanical-calculated results to explicitly demonstrate that liquids hinder the rotation of a cogwheel-gearing system consisting of two nonpolar hexaethynyl-benzene molecules stacked on graphene with π–π bonding. For nine common organic solvents (some of which can be viewed as small models of lubricants)acetic acid, propylene carbonate, benzene, ethyl acetate, ethanol, tetrahydrofuran, acetone, acetonitrile, and n-hexane–torque profiles reveal a counterintuitive increasing hindrance effect with decreasing solvent viscosity. Through a further analysis by the reduced density gradient method, we find that noncovalent interactions, that is, dispersion forces between the solvents and gears, dominate in obstructing nonpolar gear rotation transfer in the solvents of lower viscosity; our torque approach thus predicts a significant solvent effect on molecular motors. This study shows that the torque approach can help better understand the mechanisms of molecular rotors working in a realistic liquid medium and guide the design of effective molecular motors for viscosity probes or pumping fluids, for example.
doi_str_mv 10.1021/acs.jpcc.1c04239
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcc_1c04239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2636455757</sourcerecordid><originalsourceid>FETCH-LOGICAL-a313t-f098eefd971fd39555c3146832537a52a0888c28fd416f7c7657f9f80f151553</originalsourceid><addsrcrecordid>eNp1kEFPAjEQRhujiYjePfbogcV2u93uHg1RIMGYIPemdKe6WFpsuxr-vYsQb55mknnfZOYhdEvJmJKc3isdx5ud1mOqSZGz-gwNaM3yTBScn__1hbhEVzFuCOGMUDZA8OrtF7gU8ax1DQSc3gHPXYJgvf5o3Rte-qRS6x1eQ_oGcPjZW9CdVQFPQYU4wiriJXyBstDg9R6vfPjsAE-UPVCHaLxGF0bZCDenOkSrp8fVZJYtXqbzycMiU4yylBlSVwCmqQU1Das555rRoqxYzplQPFekqiqdV6YpaGmEFiUXpjYVMZRTztkQ3R3X7oLvT4hJbtuowVrlwHdR5iUrex2Cix4lR1QHH2MAI3eh3aqwl5TIg1DZC5UHofIktI-MjpHfie-C61_5H_8Bggx51Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2636455757</pqid></control><display><type>article</type><title>Solvents Hinder the Interlocking Rotation between Molecular Gears, as Revealed by Torque Calculations</title><source>ACS Publications</source><creator>Ahmed, Syed Bilal ; Ullah, Naeem ; Zhao, Yanling ; Zhang, Ruiqin ; Van Hove, Michel A</creator><creatorcontrib>Ahmed, Syed Bilal ; Ullah, Naeem ; Zhao, Yanling ; Zhang, Ruiqin ; Van Hove, Michel A</creatorcontrib><description>Molecular motors offer promising applications in the fields of nanodevices and nanofluidics. It is thus highly relevant to study their practical operation processes in fluids. In this work, we adopted the torque approach based on quantum mechanical-calculated results to explicitly demonstrate that liquids hinder the rotation of a cogwheel-gearing system consisting of two nonpolar hexaethynyl-benzene molecules stacked on graphene with π–π bonding. For nine common organic solvents (some of which can be viewed as small models of lubricants)acetic acid, propylene carbonate, benzene, ethyl acetate, ethanol, tetrahydrofuran, acetone, acetonitrile, and n-hexane–torque profiles reveal a counterintuitive increasing hindrance effect with decreasing solvent viscosity. Through a further analysis by the reduced density gradient method, we find that noncovalent interactions, that is, dispersion forces between the solvents and gears, dominate in obstructing nonpolar gear rotation transfer in the solvents of lower viscosity; our torque approach thus predicts a significant solvent effect on molecular motors. This study shows that the torque approach can help better understand the mechanisms of molecular rotors working in a realistic liquid medium and guide the design of effective molecular motors for viscosity probes or pumping fluids, for example.</description><identifier>ISSN: 1932-7447</identifier><identifier>ISSN: 1932-7455</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.1c04239</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>acetone ; acetonitrile ; benzene ; C: Energy Conversion and Storage ; carbonates ; ethanol ; ethyl acetate ; graphene ; liquids ; physical chemistry ; propylene ; solvents ; tetrahydrofuran ; torque ; viscosity</subject><ispartof>Journal of physical chemistry. C, 2021-08, Vol.125 (32), p.17612-17621</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a313t-f098eefd971fd39555c3146832537a52a0888c28fd416f7c7657f9f80f151553</citedby><cites>FETCH-LOGICAL-a313t-f098eefd971fd39555c3146832537a52a0888c28fd416f7c7657f9f80f151553</cites><orcidid>0000-0001-5840-9149 ; 0000-0001-6897-4010</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.1c04239$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.1c04239$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56717,56767</link.rule.ids></links><search><creatorcontrib>Ahmed, Syed Bilal</creatorcontrib><creatorcontrib>Ullah, Naeem</creatorcontrib><creatorcontrib>Zhao, Yanling</creatorcontrib><creatorcontrib>Zhang, Ruiqin</creatorcontrib><creatorcontrib>Van Hove, Michel A</creatorcontrib><title>Solvents Hinder the Interlocking Rotation between Molecular Gears, as Revealed by Torque Calculations</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Molecular motors offer promising applications in the fields of nanodevices and nanofluidics. It is thus highly relevant to study their practical operation processes in fluids. In this work, we adopted the torque approach based on quantum mechanical-calculated results to explicitly demonstrate that liquids hinder the rotation of a cogwheel-gearing system consisting of two nonpolar hexaethynyl-benzene molecules stacked on graphene with π–π bonding. For nine common organic solvents (some of which can be viewed as small models of lubricants)acetic acid, propylene carbonate, benzene, ethyl acetate, ethanol, tetrahydrofuran, acetone, acetonitrile, and n-hexane–torque profiles reveal a counterintuitive increasing hindrance effect with decreasing solvent viscosity. Through a further analysis by the reduced density gradient method, we find that noncovalent interactions, that is, dispersion forces between the solvents and gears, dominate in obstructing nonpolar gear rotation transfer in the solvents of lower viscosity; our torque approach thus predicts a significant solvent effect on molecular motors. This study shows that the torque approach can help better understand the mechanisms of molecular rotors working in a realistic liquid medium and guide the design of effective molecular motors for viscosity probes or pumping fluids, for example.</description><subject>acetone</subject><subject>acetonitrile</subject><subject>benzene</subject><subject>C: Energy Conversion and Storage</subject><subject>carbonates</subject><subject>ethanol</subject><subject>ethyl acetate</subject><subject>graphene</subject><subject>liquids</subject><subject>physical chemistry</subject><subject>propylene</subject><subject>solvents</subject><subject>tetrahydrofuran</subject><subject>torque</subject><subject>viscosity</subject><issn>1932-7447</issn><issn>1932-7455</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kEFPAjEQRhujiYjePfbogcV2u93uHg1RIMGYIPemdKe6WFpsuxr-vYsQb55mknnfZOYhdEvJmJKc3isdx5ud1mOqSZGz-gwNaM3yTBScn__1hbhEVzFuCOGMUDZA8OrtF7gU8ax1DQSc3gHPXYJgvf5o3Rte-qRS6x1eQ_oGcPjZW9CdVQFPQYU4wiriJXyBstDg9R6vfPjsAE-UPVCHaLxGF0bZCDenOkSrp8fVZJYtXqbzycMiU4yylBlSVwCmqQU1Das555rRoqxYzplQPFekqiqdV6YpaGmEFiUXpjYVMZRTztkQ3R3X7oLvT4hJbtuowVrlwHdR5iUrex2Cix4lR1QHH2MAI3eh3aqwl5TIg1DZC5UHofIktI-MjpHfie-C61_5H_8Bggx51Q</recordid><startdate>20210819</startdate><enddate>20210819</enddate><creator>Ahmed, Syed Bilal</creator><creator>Ullah, Naeem</creator><creator>Zhao, Yanling</creator><creator>Zhang, Ruiqin</creator><creator>Van Hove, Michel A</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-5840-9149</orcidid><orcidid>https://orcid.org/0000-0001-6897-4010</orcidid></search><sort><creationdate>20210819</creationdate><title>Solvents Hinder the Interlocking Rotation between Molecular Gears, as Revealed by Torque Calculations</title><author>Ahmed, Syed Bilal ; Ullah, Naeem ; Zhao, Yanling ; Zhang, Ruiqin ; Van Hove, Michel A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a313t-f098eefd971fd39555c3146832537a52a0888c28fd416f7c7657f9f80f151553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>acetone</topic><topic>acetonitrile</topic><topic>benzene</topic><topic>C: Energy Conversion and Storage</topic><topic>carbonates</topic><topic>ethanol</topic><topic>ethyl acetate</topic><topic>graphene</topic><topic>liquids</topic><topic>physical chemistry</topic><topic>propylene</topic><topic>solvents</topic><topic>tetrahydrofuran</topic><topic>torque</topic><topic>viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmed, Syed Bilal</creatorcontrib><creatorcontrib>Ullah, Naeem</creatorcontrib><creatorcontrib>Zhao, Yanling</creatorcontrib><creatorcontrib>Zhang, Ruiqin</creatorcontrib><creatorcontrib>Van Hove, Michel A</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmed, Syed Bilal</au><au>Ullah, Naeem</au><au>Zhao, Yanling</au><au>Zhang, Ruiqin</au><au>Van Hove, Michel A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solvents Hinder the Interlocking Rotation between Molecular Gears, as Revealed by Torque Calculations</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2021-08-19</date><risdate>2021</risdate><volume>125</volume><issue>32</issue><spage>17612</spage><epage>17621</epage><pages>17612-17621</pages><issn>1932-7447</issn><issn>1932-7455</issn><eissn>1932-7455</eissn><abstract>Molecular motors offer promising applications in the fields of nanodevices and nanofluidics. It is thus highly relevant to study their practical operation processes in fluids. In this work, we adopted the torque approach based on quantum mechanical-calculated results to explicitly demonstrate that liquids hinder the rotation of a cogwheel-gearing system consisting of two nonpolar hexaethynyl-benzene molecules stacked on graphene with π–π bonding. For nine common organic solvents (some of which can be viewed as small models of lubricants)acetic acid, propylene carbonate, benzene, ethyl acetate, ethanol, tetrahydrofuran, acetone, acetonitrile, and n-hexane–torque profiles reveal a counterintuitive increasing hindrance effect with decreasing solvent viscosity. Through a further analysis by the reduced density gradient method, we find that noncovalent interactions, that is, dispersion forces between the solvents and gears, dominate in obstructing nonpolar gear rotation transfer in the solvents of lower viscosity; our torque approach thus predicts a significant solvent effect on molecular motors. This study shows that the torque approach can help better understand the mechanisms of molecular rotors working in a realistic liquid medium and guide the design of effective molecular motors for viscosity probes or pumping fluids, for example.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.1c04239</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5840-9149</orcidid><orcidid>https://orcid.org/0000-0001-6897-4010</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2021-08, Vol.125 (32), p.17612-17621
issn 1932-7447
1932-7455
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_acs_jpcc_1c04239
source ACS Publications
subjects acetone
acetonitrile
benzene
C: Energy Conversion and Storage
carbonates
ethanol
ethyl acetate
graphene
liquids
physical chemistry
propylene
solvents
tetrahydrofuran
torque
viscosity
title Solvents Hinder the Interlocking Rotation between Molecular Gears, as Revealed by Torque Calculations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T01%3A50%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solvents%20Hinder%20the%20Interlocking%20Rotation%20between%20Molecular%20Gears,%20as%20Revealed%20by%20Torque%20Calculations&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Ahmed,%20Syed%20Bilal&rft.date=2021-08-19&rft.volume=125&rft.issue=32&rft.spage=17612&rft.epage=17621&rft.pages=17612-17621&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.1c04239&rft_dat=%3Cproquest_cross%3E2636455757%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2636455757&rft_id=info:pmid/&rfr_iscdi=true