Solvents Hinder the Interlocking Rotation between Molecular Gears, as Revealed by Torque Calculations
Molecular motors offer promising applications in the fields of nanodevices and nanofluidics. It is thus highly relevant to study their practical operation processes in fluids. In this work, we adopted the torque approach based on quantum mechanical-calculated results to explicitly demonstrate that l...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2021-08, Vol.125 (32), p.17612-17621 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17621 |
---|---|
container_issue | 32 |
container_start_page | 17612 |
container_title | Journal of physical chemistry. C |
container_volume | 125 |
creator | Ahmed, Syed Bilal Ullah, Naeem Zhao, Yanling Zhang, Ruiqin Van Hove, Michel A |
description | Molecular motors offer promising applications in the fields of nanodevices and nanofluidics. It is thus highly relevant to study their practical operation processes in fluids. In this work, we adopted the torque approach based on quantum mechanical-calculated results to explicitly demonstrate that liquids hinder the rotation of a cogwheel-gearing system consisting of two nonpolar hexaethynyl-benzene molecules stacked on graphene with π–π bonding. For nine common organic solvents (some of which can be viewed as small models of lubricants)acetic acid, propylene carbonate, benzene, ethyl acetate, ethanol, tetrahydrofuran, acetone, acetonitrile, and n-hexane–torque profiles reveal a counterintuitive increasing hindrance effect with decreasing solvent viscosity. Through a further analysis by the reduced density gradient method, we find that noncovalent interactions, that is, dispersion forces between the solvents and gears, dominate in obstructing nonpolar gear rotation transfer in the solvents of lower viscosity; our torque approach thus predicts a significant solvent effect on molecular motors. This study shows that the torque approach can help better understand the mechanisms of molecular rotors working in a realistic liquid medium and guide the design of effective molecular motors for viscosity probes or pumping fluids, for example. |
doi_str_mv | 10.1021/acs.jpcc.1c04239 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcc_1c04239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2636455757</sourcerecordid><originalsourceid>FETCH-LOGICAL-a313t-f098eefd971fd39555c3146832537a52a0888c28fd416f7c7657f9f80f151553</originalsourceid><addsrcrecordid>eNp1kEFPAjEQRhujiYjePfbogcV2u93uHg1RIMGYIPemdKe6WFpsuxr-vYsQb55mknnfZOYhdEvJmJKc3isdx5ud1mOqSZGz-gwNaM3yTBScn__1hbhEVzFuCOGMUDZA8OrtF7gU8ax1DQSc3gHPXYJgvf5o3Rte-qRS6x1eQ_oGcPjZW9CdVQFPQYU4wiriJXyBstDg9R6vfPjsAE-UPVCHaLxGF0bZCDenOkSrp8fVZJYtXqbzycMiU4yylBlSVwCmqQU1Das555rRoqxYzplQPFekqiqdV6YpaGmEFiUXpjYVMZRTztkQ3R3X7oLvT4hJbtuowVrlwHdR5iUrex2Cix4lR1QHH2MAI3eh3aqwl5TIg1DZC5UHofIktI-MjpHfie-C61_5H_8Bggx51Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2636455757</pqid></control><display><type>article</type><title>Solvents Hinder the Interlocking Rotation between Molecular Gears, as Revealed by Torque Calculations</title><source>ACS Publications</source><creator>Ahmed, Syed Bilal ; Ullah, Naeem ; Zhao, Yanling ; Zhang, Ruiqin ; Van Hove, Michel A</creator><creatorcontrib>Ahmed, Syed Bilal ; Ullah, Naeem ; Zhao, Yanling ; Zhang, Ruiqin ; Van Hove, Michel A</creatorcontrib><description>Molecular motors offer promising applications in the fields of nanodevices and nanofluidics. It is thus highly relevant to study their practical operation processes in fluids. In this work, we adopted the torque approach based on quantum mechanical-calculated results to explicitly demonstrate that liquids hinder the rotation of a cogwheel-gearing system consisting of two nonpolar hexaethynyl-benzene molecules stacked on graphene with π–π bonding. For nine common organic solvents (some of which can be viewed as small models of lubricants)acetic acid, propylene carbonate, benzene, ethyl acetate, ethanol, tetrahydrofuran, acetone, acetonitrile, and n-hexane–torque profiles reveal a counterintuitive increasing hindrance effect with decreasing solvent viscosity. Through a further analysis by the reduced density gradient method, we find that noncovalent interactions, that is, dispersion forces between the solvents and gears, dominate in obstructing nonpolar gear rotation transfer in the solvents of lower viscosity; our torque approach thus predicts a significant solvent effect on molecular motors. This study shows that the torque approach can help better understand the mechanisms of molecular rotors working in a realistic liquid medium and guide the design of effective molecular motors for viscosity probes or pumping fluids, for example.</description><identifier>ISSN: 1932-7447</identifier><identifier>ISSN: 1932-7455</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.1c04239</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>acetone ; acetonitrile ; benzene ; C: Energy Conversion and Storage ; carbonates ; ethanol ; ethyl acetate ; graphene ; liquids ; physical chemistry ; propylene ; solvents ; tetrahydrofuran ; torque ; viscosity</subject><ispartof>Journal of physical chemistry. C, 2021-08, Vol.125 (32), p.17612-17621</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a313t-f098eefd971fd39555c3146832537a52a0888c28fd416f7c7657f9f80f151553</citedby><cites>FETCH-LOGICAL-a313t-f098eefd971fd39555c3146832537a52a0888c28fd416f7c7657f9f80f151553</cites><orcidid>0000-0001-5840-9149 ; 0000-0001-6897-4010</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.1c04239$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.1c04239$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56717,56767</link.rule.ids></links><search><creatorcontrib>Ahmed, Syed Bilal</creatorcontrib><creatorcontrib>Ullah, Naeem</creatorcontrib><creatorcontrib>Zhao, Yanling</creatorcontrib><creatorcontrib>Zhang, Ruiqin</creatorcontrib><creatorcontrib>Van Hove, Michel A</creatorcontrib><title>Solvents Hinder the Interlocking Rotation between Molecular Gears, as Revealed by Torque Calculations</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Molecular motors offer promising applications in the fields of nanodevices and nanofluidics. It is thus highly relevant to study their practical operation processes in fluids. In this work, we adopted the torque approach based on quantum mechanical-calculated results to explicitly demonstrate that liquids hinder the rotation of a cogwheel-gearing system consisting of two nonpolar hexaethynyl-benzene molecules stacked on graphene with π–π bonding. For nine common organic solvents (some of which can be viewed as small models of lubricants)acetic acid, propylene carbonate, benzene, ethyl acetate, ethanol, tetrahydrofuran, acetone, acetonitrile, and n-hexane–torque profiles reveal a counterintuitive increasing hindrance effect with decreasing solvent viscosity. Through a further analysis by the reduced density gradient method, we find that noncovalent interactions, that is, dispersion forces between the solvents and gears, dominate in obstructing nonpolar gear rotation transfer in the solvents of lower viscosity; our torque approach thus predicts a significant solvent effect on molecular motors. This study shows that the torque approach can help better understand the mechanisms of molecular rotors working in a realistic liquid medium and guide the design of effective molecular motors for viscosity probes or pumping fluids, for example.</description><subject>acetone</subject><subject>acetonitrile</subject><subject>benzene</subject><subject>C: Energy Conversion and Storage</subject><subject>carbonates</subject><subject>ethanol</subject><subject>ethyl acetate</subject><subject>graphene</subject><subject>liquids</subject><subject>physical chemistry</subject><subject>propylene</subject><subject>solvents</subject><subject>tetrahydrofuran</subject><subject>torque</subject><subject>viscosity</subject><issn>1932-7447</issn><issn>1932-7455</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kEFPAjEQRhujiYjePfbogcV2u93uHg1RIMGYIPemdKe6WFpsuxr-vYsQb55mknnfZOYhdEvJmJKc3isdx5ud1mOqSZGz-gwNaM3yTBScn__1hbhEVzFuCOGMUDZA8OrtF7gU8ax1DQSc3gHPXYJgvf5o3Rte-qRS6x1eQ_oGcPjZW9CdVQFPQYU4wiriJXyBstDg9R6vfPjsAE-UPVCHaLxGF0bZCDenOkSrp8fVZJYtXqbzycMiU4yylBlSVwCmqQU1Das555rRoqxYzplQPFekqiqdV6YpaGmEFiUXpjYVMZRTztkQ3R3X7oLvT4hJbtuowVrlwHdR5iUrex2Cix4lR1QHH2MAI3eh3aqwl5TIg1DZC5UHofIktI-MjpHfie-C61_5H_8Bggx51Q</recordid><startdate>20210819</startdate><enddate>20210819</enddate><creator>Ahmed, Syed Bilal</creator><creator>Ullah, Naeem</creator><creator>Zhao, Yanling</creator><creator>Zhang, Ruiqin</creator><creator>Van Hove, Michel A</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-5840-9149</orcidid><orcidid>https://orcid.org/0000-0001-6897-4010</orcidid></search><sort><creationdate>20210819</creationdate><title>Solvents Hinder the Interlocking Rotation between Molecular Gears, as Revealed by Torque Calculations</title><author>Ahmed, Syed Bilal ; Ullah, Naeem ; Zhao, Yanling ; Zhang, Ruiqin ; Van Hove, Michel A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a313t-f098eefd971fd39555c3146832537a52a0888c28fd416f7c7657f9f80f151553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>acetone</topic><topic>acetonitrile</topic><topic>benzene</topic><topic>C: Energy Conversion and Storage</topic><topic>carbonates</topic><topic>ethanol</topic><topic>ethyl acetate</topic><topic>graphene</topic><topic>liquids</topic><topic>physical chemistry</topic><topic>propylene</topic><topic>solvents</topic><topic>tetrahydrofuran</topic><topic>torque</topic><topic>viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmed, Syed Bilal</creatorcontrib><creatorcontrib>Ullah, Naeem</creatorcontrib><creatorcontrib>Zhao, Yanling</creatorcontrib><creatorcontrib>Zhang, Ruiqin</creatorcontrib><creatorcontrib>Van Hove, Michel A</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmed, Syed Bilal</au><au>Ullah, Naeem</au><au>Zhao, Yanling</au><au>Zhang, Ruiqin</au><au>Van Hove, Michel A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solvents Hinder the Interlocking Rotation between Molecular Gears, as Revealed by Torque Calculations</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2021-08-19</date><risdate>2021</risdate><volume>125</volume><issue>32</issue><spage>17612</spage><epage>17621</epage><pages>17612-17621</pages><issn>1932-7447</issn><issn>1932-7455</issn><eissn>1932-7455</eissn><abstract>Molecular motors offer promising applications in the fields of nanodevices and nanofluidics. It is thus highly relevant to study their practical operation processes in fluids. In this work, we adopted the torque approach based on quantum mechanical-calculated results to explicitly demonstrate that liquids hinder the rotation of a cogwheel-gearing system consisting of two nonpolar hexaethynyl-benzene molecules stacked on graphene with π–π bonding. For nine common organic solvents (some of which can be viewed as small models of lubricants)acetic acid, propylene carbonate, benzene, ethyl acetate, ethanol, tetrahydrofuran, acetone, acetonitrile, and n-hexane–torque profiles reveal a counterintuitive increasing hindrance effect with decreasing solvent viscosity. Through a further analysis by the reduced density gradient method, we find that noncovalent interactions, that is, dispersion forces between the solvents and gears, dominate in obstructing nonpolar gear rotation transfer in the solvents of lower viscosity; our torque approach thus predicts a significant solvent effect on molecular motors. This study shows that the torque approach can help better understand the mechanisms of molecular rotors working in a realistic liquid medium and guide the design of effective molecular motors for viscosity probes or pumping fluids, for example.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.1c04239</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5840-9149</orcidid><orcidid>https://orcid.org/0000-0001-6897-4010</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2021-08, Vol.125 (32), p.17612-17621 |
issn | 1932-7447 1932-7455 1932-7455 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acs_jpcc_1c04239 |
source | ACS Publications |
subjects | acetone acetonitrile benzene C: Energy Conversion and Storage carbonates ethanol ethyl acetate graphene liquids physical chemistry propylene solvents tetrahydrofuran torque viscosity |
title | Solvents Hinder the Interlocking Rotation between Molecular Gears, as Revealed by Torque Calculations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T01%3A50%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solvents%20Hinder%20the%20Interlocking%20Rotation%20between%20Molecular%20Gears,%20as%20Revealed%20by%20Torque%20Calculations&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Ahmed,%20Syed%20Bilal&rft.date=2021-08-19&rft.volume=125&rft.issue=32&rft.spage=17612&rft.epage=17621&rft.pages=17612-17621&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.1c04239&rft_dat=%3Cproquest_cross%3E2636455757%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2636455757&rft_id=info:pmid/&rfr_iscdi=true |