Influence of Stacking Order of Phthalocyanine and Fullerene Layers on the Photoexcited Carrier Dynamics in Model Organic Solar Cell

Metal phthalocyanine and fullerene are typical p-type and n-type organic semiconductors and are often used as constituents of model systems of organic photovoltaics (OPVs). The light–electricity conversion efficiency of the OPVs is influenced by many factors, and a composite structure is one of them...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2021-07, Vol.125 (25), p.13963-13970
Hauptverfasser: Ozawa, Kenichi, Yamamoto, Susumu, Miyazawa, Tetsuya, Yano, Keita, Okudaira, Koji, Mase, Kazuhiko, Matsuda, Iwao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13970
container_issue 25
container_start_page 13963
container_title Journal of physical chemistry. C
container_volume 125
creator Ozawa, Kenichi
Yamamoto, Susumu
Miyazawa, Tetsuya
Yano, Keita
Okudaira, Koji
Mase, Kazuhiko
Matsuda, Iwao
description Metal phthalocyanine and fullerene are typical p-type and n-type organic semiconductors and are often used as constituents of model systems of organic photovoltaics (OPVs). The light–electricity conversion efficiency of the OPVs is influenced by many factors, and a composite structure is one of them. In the present study, time-resolved X-ray photoelectron spectroscopy has been utilized to examine the influence of the stacking order of copper phthalocyanine (CuPc) and fullerene (C60) on photoexcited carrier dynamics in layered CuPc–C60 thin-film OPVs fabricated on a rutile TiO2(110) substrate. TiO2 is a strong n-type semiconductor and is found to serve as an electron acceptor, which collects the excited electrons in both CuPc and C60 layers irrespective of their stacking order. However, a clear difference is found in the electron transfer from C60 to TiO2 in short delay times below 1 ns; an electron transfer is facilitated in CuPc/C60/TiO2 stacking, whereas the fast electron transfer is suppressed in C60/CuPc/TiO2 stacking. The insertion of the CuPc layer between C60 and TiO2 is effective to block the C60 → TiO2 electron transfer even though the CuPc layer has a monolayer thickness.
doi_str_mv 10.1021/acs.jpcc.1c03584
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcc_1c03584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a760144782</sourcerecordid><originalsourceid>FETCH-LOGICAL-a346t-4caa59e6e4d3ee4f22fe06e4fcd7f26ba8e2227713166c8bb2925630a2797a543</originalsourceid><addsrcrecordid>eNp1kEtPwkAUhSdGExHdu5wfYHFebenSVFESDCbourlM70BxmCHTkti1f9xBiDtX93XOl5tDyC1nI84EvwfdjjY7rUdcM5mO1RkZ8EKKJFdpev7Xq_ySXLXthrFUMi4H5HvqjN2j00i9oYsO9GfjVnQeagyHzdu6W4P1ugfXOKTgajrZW4sB4zSDHkNLvaPdGqPUdx6_dNNhTUsIoYmIx97BttEtbRx99TXaiF5FlqYLbyHQEq29JhcGbIs3pzokH5On9_Ilmc2fp-XDLAGpsi5RGiAtMENVS0RlhDDI4mR0nRuRLWGMQog855JnmR4vl6IQaSYZiLzIIVVySNiRq4Nv24Cm2oVmC6GvOKsOIVYxxOoQYnUKMVrujpbfi98HFx_8X_4DqO53mQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Influence of Stacking Order of Phthalocyanine and Fullerene Layers on the Photoexcited Carrier Dynamics in Model Organic Solar Cell</title><source>ACS Publications</source><creator>Ozawa, Kenichi ; Yamamoto, Susumu ; Miyazawa, Tetsuya ; Yano, Keita ; Okudaira, Koji ; Mase, Kazuhiko ; Matsuda, Iwao</creator><creatorcontrib>Ozawa, Kenichi ; Yamamoto, Susumu ; Miyazawa, Tetsuya ; Yano, Keita ; Okudaira, Koji ; Mase, Kazuhiko ; Matsuda, Iwao</creatorcontrib><description>Metal phthalocyanine and fullerene are typical p-type and n-type organic semiconductors and are often used as constituents of model systems of organic photovoltaics (OPVs). The light–electricity conversion efficiency of the OPVs is influenced by many factors, and a composite structure is one of them. In the present study, time-resolved X-ray photoelectron spectroscopy has been utilized to examine the influence of the stacking order of copper phthalocyanine (CuPc) and fullerene (C60) on photoexcited carrier dynamics in layered CuPc–C60 thin-film OPVs fabricated on a rutile TiO2(110) substrate. TiO2 is a strong n-type semiconductor and is found to serve as an electron acceptor, which collects the excited electrons in both CuPc and C60 layers irrespective of their stacking order. However, a clear difference is found in the electron transfer from C60 to TiO2 in short delay times below 1 ns; an electron transfer is facilitated in CuPc/C60/TiO2 stacking, whereas the fast electron transfer is suppressed in C60/CuPc/TiO2 stacking. The insertion of the CuPc layer between C60 and TiO2 is effective to block the C60 → TiO2 electron transfer even though the CuPc layer has a monolayer thickness.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.1c03584</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Spectroscopy and Dynamics of Nano, Hybrid, and Low-Dimensional Materials</subject><ispartof>Journal of physical chemistry. C, 2021-07, Vol.125 (25), p.13963-13970</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a346t-4caa59e6e4d3ee4f22fe06e4fcd7f26ba8e2227713166c8bb2925630a2797a543</citedby><cites>FETCH-LOGICAL-a346t-4caa59e6e4d3ee4f22fe06e4fcd7f26ba8e2227713166c8bb2925630a2797a543</cites><orcidid>0000-0003-2157-4671 ; 0000-0002-6116-7993</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.1c03584$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.1c03584$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56717,56767</link.rule.ids></links><search><creatorcontrib>Ozawa, Kenichi</creatorcontrib><creatorcontrib>Yamamoto, Susumu</creatorcontrib><creatorcontrib>Miyazawa, Tetsuya</creatorcontrib><creatorcontrib>Yano, Keita</creatorcontrib><creatorcontrib>Okudaira, Koji</creatorcontrib><creatorcontrib>Mase, Kazuhiko</creatorcontrib><creatorcontrib>Matsuda, Iwao</creatorcontrib><title>Influence of Stacking Order of Phthalocyanine and Fullerene Layers on the Photoexcited Carrier Dynamics in Model Organic Solar Cell</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Metal phthalocyanine and fullerene are typical p-type and n-type organic semiconductors and are often used as constituents of model systems of organic photovoltaics (OPVs). The light–electricity conversion efficiency of the OPVs is influenced by many factors, and a composite structure is one of them. In the present study, time-resolved X-ray photoelectron spectroscopy has been utilized to examine the influence of the stacking order of copper phthalocyanine (CuPc) and fullerene (C60) on photoexcited carrier dynamics in layered CuPc–C60 thin-film OPVs fabricated on a rutile TiO2(110) substrate. TiO2 is a strong n-type semiconductor and is found to serve as an electron acceptor, which collects the excited electrons in both CuPc and C60 layers irrespective of their stacking order. However, a clear difference is found in the electron transfer from C60 to TiO2 in short delay times below 1 ns; an electron transfer is facilitated in CuPc/C60/TiO2 stacking, whereas the fast electron transfer is suppressed in C60/CuPc/TiO2 stacking. The insertion of the CuPc layer between C60 and TiO2 is effective to block the C60 → TiO2 electron transfer even though the CuPc layer has a monolayer thickness.</description><subject>C: Spectroscopy and Dynamics of Nano, Hybrid, and Low-Dimensional Materials</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kEtPwkAUhSdGExHdu5wfYHFebenSVFESDCbourlM70BxmCHTkti1f9xBiDtX93XOl5tDyC1nI84EvwfdjjY7rUdcM5mO1RkZ8EKKJFdpev7Xq_ySXLXthrFUMi4H5HvqjN2j00i9oYsO9GfjVnQeagyHzdu6W4P1ugfXOKTgajrZW4sB4zSDHkNLvaPdGqPUdx6_dNNhTUsIoYmIx97BttEtbRx99TXaiF5FlqYLbyHQEq29JhcGbIs3pzokH5On9_Ilmc2fp-XDLAGpsi5RGiAtMENVS0RlhDDI4mR0nRuRLWGMQog855JnmR4vl6IQaSYZiLzIIVVySNiRq4Nv24Cm2oVmC6GvOKsOIVYxxOoQYnUKMVrujpbfi98HFx_8X_4DqO53mQ</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Ozawa, Kenichi</creator><creator>Yamamoto, Susumu</creator><creator>Miyazawa, Tetsuya</creator><creator>Yano, Keita</creator><creator>Okudaira, Koji</creator><creator>Mase, Kazuhiko</creator><creator>Matsuda, Iwao</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2157-4671</orcidid><orcidid>https://orcid.org/0000-0002-6116-7993</orcidid></search><sort><creationdate>20210701</creationdate><title>Influence of Stacking Order of Phthalocyanine and Fullerene Layers on the Photoexcited Carrier Dynamics in Model Organic Solar Cell</title><author>Ozawa, Kenichi ; Yamamoto, Susumu ; Miyazawa, Tetsuya ; Yano, Keita ; Okudaira, Koji ; Mase, Kazuhiko ; Matsuda, Iwao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a346t-4caa59e6e4d3ee4f22fe06e4fcd7f26ba8e2227713166c8bb2925630a2797a543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>C: Spectroscopy and Dynamics of Nano, Hybrid, and Low-Dimensional Materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ozawa, Kenichi</creatorcontrib><creatorcontrib>Yamamoto, Susumu</creatorcontrib><creatorcontrib>Miyazawa, Tetsuya</creatorcontrib><creatorcontrib>Yano, Keita</creatorcontrib><creatorcontrib>Okudaira, Koji</creatorcontrib><creatorcontrib>Mase, Kazuhiko</creatorcontrib><creatorcontrib>Matsuda, Iwao</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ozawa, Kenichi</au><au>Yamamoto, Susumu</au><au>Miyazawa, Tetsuya</au><au>Yano, Keita</au><au>Okudaira, Koji</au><au>Mase, Kazuhiko</au><au>Matsuda, Iwao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of Stacking Order of Phthalocyanine and Fullerene Layers on the Photoexcited Carrier Dynamics in Model Organic Solar Cell</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2021-07-01</date><risdate>2021</risdate><volume>125</volume><issue>25</issue><spage>13963</spage><epage>13970</epage><pages>13963-13970</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Metal phthalocyanine and fullerene are typical p-type and n-type organic semiconductors and are often used as constituents of model systems of organic photovoltaics (OPVs). The light–electricity conversion efficiency of the OPVs is influenced by many factors, and a composite structure is one of them. In the present study, time-resolved X-ray photoelectron spectroscopy has been utilized to examine the influence of the stacking order of copper phthalocyanine (CuPc) and fullerene (C60) on photoexcited carrier dynamics in layered CuPc–C60 thin-film OPVs fabricated on a rutile TiO2(110) substrate. TiO2 is a strong n-type semiconductor and is found to serve as an electron acceptor, which collects the excited electrons in both CuPc and C60 layers irrespective of their stacking order. However, a clear difference is found in the electron transfer from C60 to TiO2 in short delay times below 1 ns; an electron transfer is facilitated in CuPc/C60/TiO2 stacking, whereas the fast electron transfer is suppressed in C60/CuPc/TiO2 stacking. The insertion of the CuPc layer between C60 and TiO2 is effective to block the C60 → TiO2 electron transfer even though the CuPc layer has a monolayer thickness.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.1c03584</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2157-4671</orcidid><orcidid>https://orcid.org/0000-0002-6116-7993</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2021-07, Vol.125 (25), p.13963-13970
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_acs_jpcc_1c03584
source ACS Publications
subjects C: Spectroscopy and Dynamics of Nano, Hybrid, and Low-Dimensional Materials
title Influence of Stacking Order of Phthalocyanine and Fullerene Layers on the Photoexcited Carrier Dynamics in Model Organic Solar Cell
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T22%3A21%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20Stacking%20Order%20of%20Phthalocyanine%20and%20Fullerene%20Layers%20on%20the%20Photoexcited%20Carrier%20Dynamics%20in%20Model%20Organic%20Solar%20Cell&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Ozawa,%20Kenichi&rft.date=2021-07-01&rft.volume=125&rft.issue=25&rft.spage=13963&rft.epage=13970&rft.pages=13963-13970&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.1c03584&rft_dat=%3Cacs_cross%3Ea760144782%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true