In-Situ Nanotribological Properties of Ultrananocrystalline Diamond Films Investigated with Ambient Pressure Atomic Force Microscopy

The relationship between nanoscale friction and the surrounding environment has long been a critical issue in the field of nanotribology. Here, we utilized ambient pressure–atomic force microscopy to investigate the effect of environmental gas on nanoscale friction of ultrananocrystalline diamond (U...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2021-04, Vol.125 (12), p.6909-6915
Hauptverfasser: Kim, Jae-Eun, Choi, Joong Il Jake, Kim, Jeongjin, Mun, Bongjin Simon, Kim, Ki-Jeong, Park, Jeong Young
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6915
container_issue 12
container_start_page 6909
container_title Journal of physical chemistry. C
container_volume 125
creator Kim, Jae-Eun
Choi, Joong Il Jake
Kim, Jeongjin
Mun, Bongjin Simon
Kim, Ki-Jeong
Park, Jeong Young
description The relationship between nanoscale friction and the surrounding environment has long been a critical issue in the field of nanotribology. Here, we utilized ambient pressure–atomic force microscopy to investigate the effect of environmental gas on nanoscale friction of ultrananocrystalline diamond (UNCD) films. The frictional forces were measured in an atomic force microscopy (AFM) chamber in the environmental range from an ultrahigh vacuum to near ambient pressure in the presence of oxygen, nitrogen, and water. We observed that friction increased with the pressure of the oxygen responsible for the oxidation of the surface of the UNCD, while that in nitrogen gas remained unchanged. Interestingly, friction decreased in water, due to the tribochemical reaction caused by surface passivation. When two diamond materials come into contact under water conditions, the water molecules are dissociated because of normal pressure between the AFM tip and diamond surface, and the dissociative water molecule adsorption passivates the surfaces of the diamond-coated tip and UNCD, resulting in a reduction of friction force. The chemical state of the UNCD surface in various environmental conditions was confirmed using near ambient pressure X-ray photoelectron spectroscopy. This result elucidates the role of vapor-phase oxygen and water in the tribological properties of carbon-based materials.
doi_str_mv 10.1021/acs.jpcc.1c00454
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcc_1c00454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a613143240</sourcerecordid><originalsourceid>FETCH-LOGICAL-a280t-fb9db00830a349148b5bb282e49ee53f0d5e183319e4d2e8b7288192530c5a3</originalsourceid><addsrcrecordid>eNp1kE1PAjEQhhujiYjePfYHuNjP0D0SFCXBjwQ9b9ruLJbstqQtGu7-cBch3jzNJPO-78w8CF1TMqKE0Vtt02i9sXZELSFCihM0oCVnxVhIefrXi_E5ukhpTYjkhPIB-p77YunyFj9rH3J0JrRh5axu8WsMG4jZQcKhwe9tjtr3Ght3Keu2dR7wndNd8DWeubZLeO4_IWW30hlq_OXyB550xoHPfRSktI2AJzl0zuJZiBbwk7MxJBs2u0t01ug2wdWxDtFydv82fSwWLw_z6WRRaKZILhpT1oYQxYnmoqRCGWkMUwxECSB5Q2oJVHFOSxA1A2XGTClasv5VKzUfInJI3a9NEZpqE12n466ipNozrHqG1Z5hdWTYW24Olt9J2Ebfn_e__AeodXiB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>In-Situ Nanotribological Properties of Ultrananocrystalline Diamond Films Investigated with Ambient Pressure Atomic Force Microscopy</title><source>American Chemical Society Journals</source><creator>Kim, Jae-Eun ; Choi, Joong Il Jake ; Kim, Jeongjin ; Mun, Bongjin Simon ; Kim, Ki-Jeong ; Park, Jeong Young</creator><creatorcontrib>Kim, Jae-Eun ; Choi, Joong Il Jake ; Kim, Jeongjin ; Mun, Bongjin Simon ; Kim, Ki-Jeong ; Park, Jeong Young</creatorcontrib><description>The relationship between nanoscale friction and the surrounding environment has long been a critical issue in the field of nanotribology. Here, we utilized ambient pressure–atomic force microscopy to investigate the effect of environmental gas on nanoscale friction of ultrananocrystalline diamond (UNCD) films. The frictional forces were measured in an atomic force microscopy (AFM) chamber in the environmental range from an ultrahigh vacuum to near ambient pressure in the presence of oxygen, nitrogen, and water. We observed that friction increased with the pressure of the oxygen responsible for the oxidation of the surface of the UNCD, while that in nitrogen gas remained unchanged. Interestingly, friction decreased in water, due to the tribochemical reaction caused by surface passivation. When two diamond materials come into contact under water conditions, the water molecules are dissociated because of normal pressure between the AFM tip and diamond surface, and the dissociative water molecule adsorption passivates the surfaces of the diamond-coated tip and UNCD, resulting in a reduction of friction force. The chemical state of the UNCD surface in various environmental conditions was confirmed using near ambient pressure X-ray photoelectron spectroscopy. This result elucidates the role of vapor-phase oxygen and water in the tribological properties of carbon-based materials.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.1c00454</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Physical Properties of Materials and Interfaces</subject><ispartof>Journal of physical chemistry. C, 2021-04, Vol.125 (12), p.6909-6915</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a280t-fb9db00830a349148b5bb282e49ee53f0d5e183319e4d2e8b7288192530c5a3</citedby><cites>FETCH-LOGICAL-a280t-fb9db00830a349148b5bb282e49ee53f0d5e183319e4d2e8b7288192530c5a3</cites><orcidid>0000-0002-8132-3076 ; 0000-0002-3790-1684</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.1c00454$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.1c00454$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Kim, Jae-Eun</creatorcontrib><creatorcontrib>Choi, Joong Il Jake</creatorcontrib><creatorcontrib>Kim, Jeongjin</creatorcontrib><creatorcontrib>Mun, Bongjin Simon</creatorcontrib><creatorcontrib>Kim, Ki-Jeong</creatorcontrib><creatorcontrib>Park, Jeong Young</creatorcontrib><title>In-Situ Nanotribological Properties of Ultrananocrystalline Diamond Films Investigated with Ambient Pressure Atomic Force Microscopy</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>The relationship between nanoscale friction and the surrounding environment has long been a critical issue in the field of nanotribology. Here, we utilized ambient pressure–atomic force microscopy to investigate the effect of environmental gas on nanoscale friction of ultrananocrystalline diamond (UNCD) films. The frictional forces were measured in an atomic force microscopy (AFM) chamber in the environmental range from an ultrahigh vacuum to near ambient pressure in the presence of oxygen, nitrogen, and water. We observed that friction increased with the pressure of the oxygen responsible for the oxidation of the surface of the UNCD, while that in nitrogen gas remained unchanged. Interestingly, friction decreased in water, due to the tribochemical reaction caused by surface passivation. When two diamond materials come into contact under water conditions, the water molecules are dissociated because of normal pressure between the AFM tip and diamond surface, and the dissociative water molecule adsorption passivates the surfaces of the diamond-coated tip and UNCD, resulting in a reduction of friction force. The chemical state of the UNCD surface in various environmental conditions was confirmed using near ambient pressure X-ray photoelectron spectroscopy. This result elucidates the role of vapor-phase oxygen and water in the tribological properties of carbon-based materials.</description><subject>C: Physical Properties of Materials and Interfaces</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PAjEQhhujiYjePfYHuNjP0D0SFCXBjwQ9b9ruLJbstqQtGu7-cBch3jzNJPO-78w8CF1TMqKE0Vtt02i9sXZELSFCihM0oCVnxVhIefrXi_E5ukhpTYjkhPIB-p77YunyFj9rH3J0JrRh5axu8WsMG4jZQcKhwe9tjtr3Ght3Keu2dR7wndNd8DWeubZLeO4_IWW30hlq_OXyB550xoHPfRSktI2AJzl0zuJZiBbwk7MxJBs2u0t01ug2wdWxDtFydv82fSwWLw_z6WRRaKZILhpT1oYQxYnmoqRCGWkMUwxECSB5Q2oJVHFOSxA1A2XGTClasv5VKzUfInJI3a9NEZpqE12n466ipNozrHqG1Z5hdWTYW24Olt9J2Ebfn_e__AeodXiB</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Kim, Jae-Eun</creator><creator>Choi, Joong Il Jake</creator><creator>Kim, Jeongjin</creator><creator>Mun, Bongjin Simon</creator><creator>Kim, Ki-Jeong</creator><creator>Park, Jeong Young</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8132-3076</orcidid><orcidid>https://orcid.org/0000-0002-3790-1684</orcidid></search><sort><creationdate>20210401</creationdate><title>In-Situ Nanotribological Properties of Ultrananocrystalline Diamond Films Investigated with Ambient Pressure Atomic Force Microscopy</title><author>Kim, Jae-Eun ; Choi, Joong Il Jake ; Kim, Jeongjin ; Mun, Bongjin Simon ; Kim, Ki-Jeong ; Park, Jeong Young</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a280t-fb9db00830a349148b5bb282e49ee53f0d5e183319e4d2e8b7288192530c5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>C: Physical Properties of Materials and Interfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Jae-Eun</creatorcontrib><creatorcontrib>Choi, Joong Il Jake</creatorcontrib><creatorcontrib>Kim, Jeongjin</creatorcontrib><creatorcontrib>Mun, Bongjin Simon</creatorcontrib><creatorcontrib>Kim, Ki-Jeong</creatorcontrib><creatorcontrib>Park, Jeong Young</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Jae-Eun</au><au>Choi, Joong Il Jake</au><au>Kim, Jeongjin</au><au>Mun, Bongjin Simon</au><au>Kim, Ki-Jeong</au><au>Park, Jeong Young</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In-Situ Nanotribological Properties of Ultrananocrystalline Diamond Films Investigated with Ambient Pressure Atomic Force Microscopy</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>125</volume><issue>12</issue><spage>6909</spage><epage>6915</epage><pages>6909-6915</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>The relationship between nanoscale friction and the surrounding environment has long been a critical issue in the field of nanotribology. Here, we utilized ambient pressure–atomic force microscopy to investigate the effect of environmental gas on nanoscale friction of ultrananocrystalline diamond (UNCD) films. The frictional forces were measured in an atomic force microscopy (AFM) chamber in the environmental range from an ultrahigh vacuum to near ambient pressure in the presence of oxygen, nitrogen, and water. We observed that friction increased with the pressure of the oxygen responsible for the oxidation of the surface of the UNCD, while that in nitrogen gas remained unchanged. Interestingly, friction decreased in water, due to the tribochemical reaction caused by surface passivation. When two diamond materials come into contact under water conditions, the water molecules are dissociated because of normal pressure between the AFM tip and diamond surface, and the dissociative water molecule adsorption passivates the surfaces of the diamond-coated tip and UNCD, resulting in a reduction of friction force. The chemical state of the UNCD surface in various environmental conditions was confirmed using near ambient pressure X-ray photoelectron spectroscopy. This result elucidates the role of vapor-phase oxygen and water in the tribological properties of carbon-based materials.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.1c00454</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-8132-3076</orcidid><orcidid>https://orcid.org/0000-0002-3790-1684</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2021-04, Vol.125 (12), p.6909-6915
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_acs_jpcc_1c00454
source American Chemical Society Journals
subjects C: Physical Properties of Materials and Interfaces
title In-Situ Nanotribological Properties of Ultrananocrystalline Diamond Films Investigated with Ambient Pressure Atomic Force Microscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T01%3A50%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In-Situ%20Nanotribological%20Properties%20of%20Ultrananocrystalline%20Diamond%20Films%20Investigated%20with%20Ambient%20Pressure%20Atomic%20Force%20Microscopy&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Kim,%20Jae-Eun&rft.date=2021-04-01&rft.volume=125&rft.issue=12&rft.spage=6909&rft.epage=6915&rft.pages=6909-6915&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.1c00454&rft_dat=%3Cacs_cross%3Ea613143240%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true