Quantitative Analysis of the UV–Vis Spectra for Gold Nanoparticles Powered by Supervised Machine Learning

Surface plasmon resonance is sensitive to the size and shape of gold nanoparticles. The quantitative analysis of the ultraviolet–visible spectra provides information about the structural parameters of the nanoparticles. This task is related to the inverse design problem where machine learning (ML) a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2021-04, Vol.125 (16), p.8656-8666
Hauptverfasser: Pashkov, D. M, Guda, A. A, Kirichkov, M. V, Guda, S. A, Martini, A, Soldatov, S. A, Soldatov, A. V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8666
container_issue 16
container_start_page 8656
container_title Journal of physical chemistry. C
container_volume 125
creator Pashkov, D. M
Guda, A. A
Kirichkov, M. V
Guda, S. A
Martini, A
Soldatov, S. A
Soldatov, A. V
description Surface plasmon resonance is sensitive to the size and shape of gold nanoparticles. The quantitative analysis of the ultraviolet–visible spectra provides information about the structural parameters of the nanoparticles. This task is related to the inverse design problem where machine learning (ML) algorithms show superior performance over classical approaches for problems with many degrees of freedom. If a ML algorithm is used as a black box, it often fails when target experimental data have systematic differences with the theoretical training data set. Our work aims to assess the uncertainties in the structural analysis of gold nanoparticles performed using optical spectroscopy. Therefore, ML is trained over a theoretical data set and then used as a tool to predict the spectrum for any combination of structural parameters. The region of a feasible solution is analyzed via L2 norm contour plots, and the method is extended to multicomponent mixtures where Gaussian distribution mimics the particle size distribution. We also demonstrate that the ML algorithm is able to select only informative features of the spectrum (descriptors) and establish an analytical relation between descriptors of spectra and structural parameters. This work extends the capabilities of optical spectroscopy as an analytical tool for noble metal nanoparticles.
doi_str_mv 10.1021/acs.jpcc.0c10680
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcc_0c10680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b203032603</sourcerecordid><originalsourceid>FETCH-LOGICAL-a280t-5f819b334e655aa749fa157dbbdb347927eacdeb0abafb62a28ee286d7c58f413</originalsourceid><addsrcrecordid>eNp1kE1OwzAQRi0EEqWwZ-kDkGIncZwsqwpapPKn0m6jsTOmLiGJ7LSoO-7ADTkJKa3YsZr59M2bxSPkkrMBZyG_Bu0Hq0brAdOcJSk7Ij2eRWEgYyGO__ZYnpIz71eMiYjxqEfentdQtbaF1m6QDisot956WhvaLpHOF9-fX4suzxrUrQNqakfHdVnQB6jqBlxrdYmePtUf6LCgaktn6wbdxvou3YNe2grpFMFVtno9JycGSo8Xh9kn89ubl9EkmD6O70bDaQBhytpAmJRnKopiTIQAkHFmgAtZKFWoKJZZKBF0gYqBAqOSsKMQwzQppBapiXnUJ2z_V7vae4cmb5x9B7fNOct3svJOVr6TlR9kdcjVHvlt6rXrRPj_z38ABmVxEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quantitative Analysis of the UV–Vis Spectra for Gold Nanoparticles Powered by Supervised Machine Learning</title><source>ACS Publications</source><creator>Pashkov, D. M ; Guda, A. A ; Kirichkov, M. V ; Guda, S. A ; Martini, A ; Soldatov, S. A ; Soldatov, A. V</creator><creatorcontrib>Pashkov, D. M ; Guda, A. A ; Kirichkov, M. V ; Guda, S. A ; Martini, A ; Soldatov, S. A ; Soldatov, A. V</creatorcontrib><description>Surface plasmon resonance is sensitive to the size and shape of gold nanoparticles. The quantitative analysis of the ultraviolet–visible spectra provides information about the structural parameters of the nanoparticles. This task is related to the inverse design problem where machine learning (ML) algorithms show superior performance over classical approaches for problems with many degrees of freedom. If a ML algorithm is used as a black box, it often fails when target experimental data have systematic differences with the theoretical training data set. Our work aims to assess the uncertainties in the structural analysis of gold nanoparticles performed using optical spectroscopy. Therefore, ML is trained over a theoretical data set and then used as a tool to predict the spectrum for any combination of structural parameters. The region of a feasible solution is analyzed via L2 norm contour plots, and the method is extended to multicomponent mixtures where Gaussian distribution mimics the particle size distribution. We also demonstrate that the ML algorithm is able to select only informative features of the spectrum (descriptors) and establish an analytical relation between descriptors of spectra and structural parameters. This work extends the capabilities of optical spectroscopy as an analytical tool for noble metal nanoparticles.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.0c10680</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Spectroscopy and Dynamics of Nano, Hybrid, and Low-Dimensional Materials</subject><ispartof>Journal of physical chemistry. C, 2021-04, Vol.125 (16), p.8656-8666</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a280t-5f819b334e655aa749fa157dbbdb347927eacdeb0abafb62a28ee286d7c58f413</citedby><cites>FETCH-LOGICAL-a280t-5f819b334e655aa749fa157dbbdb347927eacdeb0abafb62a28ee286d7c58f413</cites><orcidid>0000-0002-6941-4987</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.0c10680$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.0c10680$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27055,27903,27904,56716,56766</link.rule.ids></links><search><creatorcontrib>Pashkov, D. M</creatorcontrib><creatorcontrib>Guda, A. A</creatorcontrib><creatorcontrib>Kirichkov, M. V</creatorcontrib><creatorcontrib>Guda, S. A</creatorcontrib><creatorcontrib>Martini, A</creatorcontrib><creatorcontrib>Soldatov, S. A</creatorcontrib><creatorcontrib>Soldatov, A. V</creatorcontrib><title>Quantitative Analysis of the UV–Vis Spectra for Gold Nanoparticles Powered by Supervised Machine Learning</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Surface plasmon resonance is sensitive to the size and shape of gold nanoparticles. The quantitative analysis of the ultraviolet–visible spectra provides information about the structural parameters of the nanoparticles. This task is related to the inverse design problem where machine learning (ML) algorithms show superior performance over classical approaches for problems with many degrees of freedom. If a ML algorithm is used as a black box, it often fails when target experimental data have systematic differences with the theoretical training data set. Our work aims to assess the uncertainties in the structural analysis of gold nanoparticles performed using optical spectroscopy. Therefore, ML is trained over a theoretical data set and then used as a tool to predict the spectrum for any combination of structural parameters. The region of a feasible solution is analyzed via L2 norm contour plots, and the method is extended to multicomponent mixtures where Gaussian distribution mimics the particle size distribution. We also demonstrate that the ML algorithm is able to select only informative features of the spectrum (descriptors) and establish an analytical relation between descriptors of spectra and structural parameters. This work extends the capabilities of optical spectroscopy as an analytical tool for noble metal nanoparticles.</description><subject>C: Spectroscopy and Dynamics of Nano, Hybrid, and Low-Dimensional Materials</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQRi0EEqWwZ-kDkGIncZwsqwpapPKn0m6jsTOmLiGJ7LSoO-7ADTkJKa3YsZr59M2bxSPkkrMBZyG_Bu0Hq0brAdOcJSk7Ij2eRWEgYyGO__ZYnpIz71eMiYjxqEfentdQtbaF1m6QDisot956WhvaLpHOF9-fX4suzxrUrQNqakfHdVnQB6jqBlxrdYmePtUf6LCgaktn6wbdxvou3YNe2grpFMFVtno9JycGSo8Xh9kn89ubl9EkmD6O70bDaQBhytpAmJRnKopiTIQAkHFmgAtZKFWoKJZZKBF0gYqBAqOSsKMQwzQppBapiXnUJ2z_V7vae4cmb5x9B7fNOct3svJOVr6TlR9kdcjVHvlt6rXrRPj_z38ABmVxEA</recordid><startdate>20210429</startdate><enddate>20210429</enddate><creator>Pashkov, D. M</creator><creator>Guda, A. A</creator><creator>Kirichkov, M. V</creator><creator>Guda, S. A</creator><creator>Martini, A</creator><creator>Soldatov, S. A</creator><creator>Soldatov, A. V</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6941-4987</orcidid></search><sort><creationdate>20210429</creationdate><title>Quantitative Analysis of the UV–Vis Spectra for Gold Nanoparticles Powered by Supervised Machine Learning</title><author>Pashkov, D. M ; Guda, A. A ; Kirichkov, M. V ; Guda, S. A ; Martini, A ; Soldatov, S. A ; Soldatov, A. V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a280t-5f819b334e655aa749fa157dbbdb347927eacdeb0abafb62a28ee286d7c58f413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>C: Spectroscopy and Dynamics of Nano, Hybrid, and Low-Dimensional Materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pashkov, D. M</creatorcontrib><creatorcontrib>Guda, A. A</creatorcontrib><creatorcontrib>Kirichkov, M. V</creatorcontrib><creatorcontrib>Guda, S. A</creatorcontrib><creatorcontrib>Martini, A</creatorcontrib><creatorcontrib>Soldatov, S. A</creatorcontrib><creatorcontrib>Soldatov, A. V</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pashkov, D. M</au><au>Guda, A. A</au><au>Kirichkov, M. V</au><au>Guda, S. A</au><au>Martini, A</au><au>Soldatov, S. A</au><au>Soldatov, A. V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative Analysis of the UV–Vis Spectra for Gold Nanoparticles Powered by Supervised Machine Learning</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2021-04-29</date><risdate>2021</risdate><volume>125</volume><issue>16</issue><spage>8656</spage><epage>8666</epage><pages>8656-8666</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Surface plasmon resonance is sensitive to the size and shape of gold nanoparticles. The quantitative analysis of the ultraviolet–visible spectra provides information about the structural parameters of the nanoparticles. This task is related to the inverse design problem where machine learning (ML) algorithms show superior performance over classical approaches for problems with many degrees of freedom. If a ML algorithm is used as a black box, it often fails when target experimental data have systematic differences with the theoretical training data set. Our work aims to assess the uncertainties in the structural analysis of gold nanoparticles performed using optical spectroscopy. Therefore, ML is trained over a theoretical data set and then used as a tool to predict the spectrum for any combination of structural parameters. The region of a feasible solution is analyzed via L2 norm contour plots, and the method is extended to multicomponent mixtures where Gaussian distribution mimics the particle size distribution. We also demonstrate that the ML algorithm is able to select only informative features of the spectrum (descriptors) and establish an analytical relation between descriptors of spectra and structural parameters. This work extends the capabilities of optical spectroscopy as an analytical tool for noble metal nanoparticles.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.0c10680</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6941-4987</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2021-04, Vol.125 (16), p.8656-8666
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_acs_jpcc_0c10680
source ACS Publications
subjects C: Spectroscopy and Dynamics of Nano, Hybrid, and Low-Dimensional Materials
title Quantitative Analysis of the UV–Vis Spectra for Gold Nanoparticles Powered by Supervised Machine Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A18%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20Analysis%20of%20the%20UV%E2%80%93Vis%20Spectra%20for%20Gold%20Nanoparticles%20Powered%20by%20Supervised%20Machine%20Learning&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Pashkov,%20D.%20M&rft.date=2021-04-29&rft.volume=125&rft.issue=16&rft.spage=8656&rft.epage=8666&rft.pages=8656-8666&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.0c10680&rft_dat=%3Cacs_cross%3Eb203032603%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true