Intrinsic Optical and Electronic Properties from Quantitative Analysis of Plasmonic Semiconductor Nanocrystal Ensemble Optical Extinction

The optical extinction spectra arising from localized surface plasmon resonance in doped semiconductor nanocrystals (NCs) have intensities and lineshapes determined by free charge carrier concentrations and various mechanisms for damping the oscillation of those free carriers. However, these intrins...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2020-11, Vol.124 (44), p.24351-24360
Hauptverfasser: Gibbs, Stephen L, Staller, Corey M, Agrawal, Ankit, Johns, Robert W, Saez Cabezas, Camila A, Milliron, Delia J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24360
container_issue 44
container_start_page 24351
container_title Journal of physical chemistry. C
container_volume 124
creator Gibbs, Stephen L
Staller, Corey M
Agrawal, Ankit
Johns, Robert W
Saez Cabezas, Camila A
Milliron, Delia J
description The optical extinction spectra arising from localized surface plasmon resonance in doped semiconductor nanocrystals (NCs) have intensities and lineshapes determined by free charge carrier concentrations and various mechanisms for damping the oscillation of those free carriers. However, these intrinsic properties are convoluted by heterogeneous broadening when measuring the spectra of ensembles. We reveal that the traditional Drude approximation is not equipped to fit spectra from a heterogeneous ensemble of doped semiconductor NCs and produces fit results that violate Mie scattering theory. The heterogeneous ensemble Drude approximation (HEDA) model rectifies this issue by accounting for ensemble heterogeneity and near-surface depletion. The HEDA model is applied to tin-doped indium oxide NCs for a range of sizes and doping levels, but we expect it to be employed for any isotropic plasmonic particles in the quasistatic regime. It captures individual NC optical properties and their contributions to the ensemble spectra, thereby enabling the analysis of intrinsic NC properties from an ensemble measurement. Quality factors for the average NC in each ensemble are quantified and found to be notably higher than those of the ensemble. Carrier mobility and conductivity derived from the HEDA fits matches that reported in the bulk thin-film literature.
doi_str_mv 10.1021/acs.jpcc.0c08195
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcc_0c08195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b496123640</sourcerecordid><originalsourceid>FETCH-LOGICAL-a280t-9f1c5b1f1feea117efe32042c2272901096e92f3562cdbdb03857ad4abb2b913</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqWwZ-kPIMWPpKmXVRWgUkWL6D6yJ7bkKrEj20X0E_hr0ofYsZrRzNx7NQehR0omlDD6LCFOdj3AhACZUVFcoREVnGVlXhTXf31e3qK7GHeEFJxQPkI_S5eCddECXvfJgmyxdA2uWg0peDeMN8H3OiSrIzbBd_hjL12ySSb7pfHcyfYQbcTe4E0rY3eSfOrOgnfNHpIP-F06D-EQ0-Bduag71eq_sOo7WQfJenePboxso3641DHavlTbxVu2Wr8uF_NVJtmMpEwYCoWihhqtJaWlNpozkjNgrGSCUCKmWjDDiymDRjWK8FlRyiaXSjElKB8jcraF4GMM2tR9sJ0Mh5qS-kiyHkjWR5L1heQgeTpLThu_D8PT8f_zX4SMe9k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Intrinsic Optical and Electronic Properties from Quantitative Analysis of Plasmonic Semiconductor Nanocrystal Ensemble Optical Extinction</title><source>American Chemical Society Journals</source><creator>Gibbs, Stephen L ; Staller, Corey M ; Agrawal, Ankit ; Johns, Robert W ; Saez Cabezas, Camila A ; Milliron, Delia J</creator><creatorcontrib>Gibbs, Stephen L ; Staller, Corey M ; Agrawal, Ankit ; Johns, Robert W ; Saez Cabezas, Camila A ; Milliron, Delia J</creatorcontrib><description>The optical extinction spectra arising from localized surface plasmon resonance in doped semiconductor nanocrystals (NCs) have intensities and lineshapes determined by free charge carrier concentrations and various mechanisms for damping the oscillation of those free carriers. However, these intrinsic properties are convoluted by heterogeneous broadening when measuring the spectra of ensembles. We reveal that the traditional Drude approximation is not equipped to fit spectra from a heterogeneous ensemble of doped semiconductor NCs and produces fit results that violate Mie scattering theory. The heterogeneous ensemble Drude approximation (HEDA) model rectifies this issue by accounting for ensemble heterogeneity and near-surface depletion. The HEDA model is applied to tin-doped indium oxide NCs for a range of sizes and doping levels, but we expect it to be employed for any isotropic plasmonic particles in the quasistatic regime. It captures individual NC optical properties and their contributions to the ensemble spectra, thereby enabling the analysis of intrinsic NC properties from an ensemble measurement. Quality factors for the average NC in each ensemble are quantified and found to be notably higher than those of the ensemble. Carrier mobility and conductivity derived from the HEDA fits matches that reported in the bulk thin-film literature.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.0c08195</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Plasmonics; Optical, Magnetic, and Hybrid Materials</subject><ispartof>Journal of physical chemistry. C, 2020-11, Vol.124 (44), p.24351-24360</ispartof><rights>2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a280t-9f1c5b1f1feea117efe32042c2272901096e92f3562cdbdb03857ad4abb2b913</citedby><cites>FETCH-LOGICAL-a280t-9f1c5b1f1feea117efe32042c2272901096e92f3562cdbdb03857ad4abb2b913</cites><orcidid>0000-0001-7311-7873 ; 0000-0002-8737-451X ; 0000-0001-8665-2840 ; 0000-0003-2533-0957 ; 0000-0002-8734-0096</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.0c08195$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.0c08195$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Gibbs, Stephen L</creatorcontrib><creatorcontrib>Staller, Corey M</creatorcontrib><creatorcontrib>Agrawal, Ankit</creatorcontrib><creatorcontrib>Johns, Robert W</creatorcontrib><creatorcontrib>Saez Cabezas, Camila A</creatorcontrib><creatorcontrib>Milliron, Delia J</creatorcontrib><title>Intrinsic Optical and Electronic Properties from Quantitative Analysis of Plasmonic Semiconductor Nanocrystal Ensemble Optical Extinction</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>The optical extinction spectra arising from localized surface plasmon resonance in doped semiconductor nanocrystals (NCs) have intensities and lineshapes determined by free charge carrier concentrations and various mechanisms for damping the oscillation of those free carriers. However, these intrinsic properties are convoluted by heterogeneous broadening when measuring the spectra of ensembles. We reveal that the traditional Drude approximation is not equipped to fit spectra from a heterogeneous ensemble of doped semiconductor NCs and produces fit results that violate Mie scattering theory. The heterogeneous ensemble Drude approximation (HEDA) model rectifies this issue by accounting for ensemble heterogeneity and near-surface depletion. The HEDA model is applied to tin-doped indium oxide NCs for a range of sizes and doping levels, but we expect it to be employed for any isotropic plasmonic particles in the quasistatic regime. It captures individual NC optical properties and their contributions to the ensemble spectra, thereby enabling the analysis of intrinsic NC properties from an ensemble measurement. Quality factors for the average NC in each ensemble are quantified and found to be notably higher than those of the ensemble. Carrier mobility and conductivity derived from the HEDA fits matches that reported in the bulk thin-film literature.</description><subject>C: Plasmonics; Optical, Magnetic, and Hybrid Materials</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqWwZ-kPIMWPpKmXVRWgUkWL6D6yJ7bkKrEj20X0E_hr0ofYsZrRzNx7NQehR0omlDD6LCFOdj3AhACZUVFcoREVnGVlXhTXf31e3qK7GHeEFJxQPkI_S5eCddECXvfJgmyxdA2uWg0peDeMN8H3OiSrIzbBd_hjL12ySSb7pfHcyfYQbcTe4E0rY3eSfOrOgnfNHpIP-F06D-EQ0-Bduag71eq_sOo7WQfJenePboxso3641DHavlTbxVu2Wr8uF_NVJtmMpEwYCoWihhqtJaWlNpozkjNgrGSCUCKmWjDDiymDRjWK8FlRyiaXSjElKB8jcraF4GMM2tR9sJ0Mh5qS-kiyHkjWR5L1heQgeTpLThu_D8PT8f_zX4SMe9k</recordid><startdate>20201105</startdate><enddate>20201105</enddate><creator>Gibbs, Stephen L</creator><creator>Staller, Corey M</creator><creator>Agrawal, Ankit</creator><creator>Johns, Robert W</creator><creator>Saez Cabezas, Camila A</creator><creator>Milliron, Delia J</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7311-7873</orcidid><orcidid>https://orcid.org/0000-0002-8737-451X</orcidid><orcidid>https://orcid.org/0000-0001-8665-2840</orcidid><orcidid>https://orcid.org/0000-0003-2533-0957</orcidid><orcidid>https://orcid.org/0000-0002-8734-0096</orcidid></search><sort><creationdate>20201105</creationdate><title>Intrinsic Optical and Electronic Properties from Quantitative Analysis of Plasmonic Semiconductor Nanocrystal Ensemble Optical Extinction</title><author>Gibbs, Stephen L ; Staller, Corey M ; Agrawal, Ankit ; Johns, Robert W ; Saez Cabezas, Camila A ; Milliron, Delia J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a280t-9f1c5b1f1feea117efe32042c2272901096e92f3562cdbdb03857ad4abb2b913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>C: Plasmonics; Optical, Magnetic, and Hybrid Materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gibbs, Stephen L</creatorcontrib><creatorcontrib>Staller, Corey M</creatorcontrib><creatorcontrib>Agrawal, Ankit</creatorcontrib><creatorcontrib>Johns, Robert W</creatorcontrib><creatorcontrib>Saez Cabezas, Camila A</creatorcontrib><creatorcontrib>Milliron, Delia J</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gibbs, Stephen L</au><au>Staller, Corey M</au><au>Agrawal, Ankit</au><au>Johns, Robert W</au><au>Saez Cabezas, Camila A</au><au>Milliron, Delia J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intrinsic Optical and Electronic Properties from Quantitative Analysis of Plasmonic Semiconductor Nanocrystal Ensemble Optical Extinction</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2020-11-05</date><risdate>2020</risdate><volume>124</volume><issue>44</issue><spage>24351</spage><epage>24360</epage><pages>24351-24360</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>The optical extinction spectra arising from localized surface plasmon resonance in doped semiconductor nanocrystals (NCs) have intensities and lineshapes determined by free charge carrier concentrations and various mechanisms for damping the oscillation of those free carriers. However, these intrinsic properties are convoluted by heterogeneous broadening when measuring the spectra of ensembles. We reveal that the traditional Drude approximation is not equipped to fit spectra from a heterogeneous ensemble of doped semiconductor NCs and produces fit results that violate Mie scattering theory. The heterogeneous ensemble Drude approximation (HEDA) model rectifies this issue by accounting for ensemble heterogeneity and near-surface depletion. The HEDA model is applied to tin-doped indium oxide NCs for a range of sizes and doping levels, but we expect it to be employed for any isotropic plasmonic particles in the quasistatic regime. It captures individual NC optical properties and their contributions to the ensemble spectra, thereby enabling the analysis of intrinsic NC properties from an ensemble measurement. Quality factors for the average NC in each ensemble are quantified and found to be notably higher than those of the ensemble. Carrier mobility and conductivity derived from the HEDA fits matches that reported in the bulk thin-film literature.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.0c08195</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7311-7873</orcidid><orcidid>https://orcid.org/0000-0002-8737-451X</orcidid><orcidid>https://orcid.org/0000-0001-8665-2840</orcidid><orcidid>https://orcid.org/0000-0003-2533-0957</orcidid><orcidid>https://orcid.org/0000-0002-8734-0096</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2020-11, Vol.124 (44), p.24351-24360
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_acs_jpcc_0c08195
source American Chemical Society Journals
subjects C: Plasmonics
Optical, Magnetic, and Hybrid Materials
title Intrinsic Optical and Electronic Properties from Quantitative Analysis of Plasmonic Semiconductor Nanocrystal Ensemble Optical Extinction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A24%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intrinsic%20Optical%20and%20Electronic%20Properties%20from%20Quantitative%20Analysis%20of%20Plasmonic%20Semiconductor%20Nanocrystal%20Ensemble%20Optical%20Extinction&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Gibbs,%20Stephen%20L&rft.date=2020-11-05&rft.volume=124&rft.issue=44&rft.spage=24351&rft.epage=24360&rft.pages=24351-24360&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.0c08195&rft_dat=%3Cacs_cross%3Eb496123640%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true