J–V Decoupling: Independent Control over Current and Potential in Electrocatalysis

This report details an approach for circumventing the current–potential coupling constraints present in traditional electrochemical voltammetry. Specifically, a light-dependent method for expanding the region of testable electrochemical conditions from merely the current–voltage coordinates lying on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2020-12, Vol.124 (52), p.28387-28394
1. Verfasser: Agbo, P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 28394
container_issue 52
container_start_page 28387
container_title Journal of physical chemistry. C
container_volume 124
creator Agbo, P
description This report details an approach for circumventing the current–potential coupling constraints present in traditional electrochemical voltammetry. Specifically, a light-dependent method for expanding the region of testable electrochemical conditions from merely the current–voltage coordinates lying on an electrocatalyst’s polarization curve, to a two-dimensional surface defined by the integral of the polarization curve, is introduced. Validation and applicability of the concept are investigated by testing the utility of current density–potential (J–V) decoupling in steering the fate of reactants in electrochemical CO2 reduction toward CO versus H2. Current density and potential are shown to serve as independent handles for controlling electrocatalyst reactivity, rather than codependent quantities. Demonstration of this concept is then used to refine Faradaic yields for CO evolution in a photo-driven electrochemical device operating at steady state. Finally, an explication of J–V decoupling as the light-dependent analog of a biophysical principle governing electron transfers and catalysis in redox-active enzymes, is put forth.
doi_str_mv 10.1021/acs.jpcc.0c08142
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcc_0c08142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b779757762</sourcerecordid><originalsourceid>FETCH-LOGICAL-a280t-48765278b6328d322d85d95e59f17e3a45ba96dd1985f8e8245cc6dbcd1c63013</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqWwZ-kDkOCfOHHYodBCUSVYFLaRYzsolbEjO0HqjjtwQ06CQyt2bGZGM--Nnj4ALjFKMSL4WsiQbnspUyQRxxk5AjNcUpIUGWPHf3NWnIKzELYIMYownYHN4_fn1yu809KNvens2w1cWaV7HYsdYOXs4J2B7kN7WI3eT0thFXx2Qxw7YWBn4cJoGWVSDMLsQhfOwUkrTNAXhz4HL8vFpnpI1k_3q-p2nQjC0ZBkvMgZKXiTU8IVJURxpkqmWdniQlORsUaUuVK45KzlmpOMSZmrRios8yn-HKD9X-ldCF63de-7d-F3NUb1RKWOVOqJSn2gEi1Xe8vvxY3exoD_y38ANWBnUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>J–V Decoupling: Independent Control over Current and Potential in Electrocatalysis</title><source>American Chemical Society Journals</source><creator>Agbo, P</creator><creatorcontrib>Agbo, P</creatorcontrib><description>This report details an approach for circumventing the current–potential coupling constraints present in traditional electrochemical voltammetry. Specifically, a light-dependent method for expanding the region of testable electrochemical conditions from merely the current–voltage coordinates lying on an electrocatalyst’s polarization curve, to a two-dimensional surface defined by the integral of the polarization curve, is introduced. Validation and applicability of the concept are investigated by testing the utility of current density–potential (J–V) decoupling in steering the fate of reactants in electrochemical CO2 reduction toward CO versus H2. Current density and potential are shown to serve as independent handles for controlling electrocatalyst reactivity, rather than codependent quantities. Demonstration of this concept is then used to refine Faradaic yields for CO evolution in a photo-driven electrochemical device operating at steady state. Finally, an explication of J–V decoupling as the light-dependent analog of a biophysical principle governing electron transfers and catalysis in redox-active enzymes, is put forth.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.0c08142</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Energy Conversion and Storage; Energy and Charge Transport</subject><ispartof>Journal of physical chemistry. C, 2020-12, Vol.124 (52), p.28387-28394</ispartof><rights>2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a280t-48765278b6328d322d85d95e59f17e3a45ba96dd1985f8e8245cc6dbcd1c63013</citedby><cites>FETCH-LOGICAL-a280t-48765278b6328d322d85d95e59f17e3a45ba96dd1985f8e8245cc6dbcd1c63013</cites><orcidid>0000-0003-3066-4791</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.0c08142$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.0c08142$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Agbo, P</creatorcontrib><title>J–V Decoupling: Independent Control over Current and Potential in Electrocatalysis</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>This report details an approach for circumventing the current–potential coupling constraints present in traditional electrochemical voltammetry. Specifically, a light-dependent method for expanding the region of testable electrochemical conditions from merely the current–voltage coordinates lying on an electrocatalyst’s polarization curve, to a two-dimensional surface defined by the integral of the polarization curve, is introduced. Validation and applicability of the concept are investigated by testing the utility of current density–potential (J–V) decoupling in steering the fate of reactants in electrochemical CO2 reduction toward CO versus H2. Current density and potential are shown to serve as independent handles for controlling electrocatalyst reactivity, rather than codependent quantities. Demonstration of this concept is then used to refine Faradaic yields for CO evolution in a photo-driven electrochemical device operating at steady state. Finally, an explication of J–V decoupling as the light-dependent analog of a biophysical principle governing electron transfers and catalysis in redox-active enzymes, is put forth.</description><subject>C: Energy Conversion and Storage; Energy and Charge Transport</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhS0EEqWwZ-kDkOCfOHHYodBCUSVYFLaRYzsolbEjO0HqjjtwQ06CQyt2bGZGM--Nnj4ALjFKMSL4WsiQbnspUyQRxxk5AjNcUpIUGWPHf3NWnIKzELYIMYownYHN4_fn1yu809KNvens2w1cWaV7HYsdYOXs4J2B7kN7WI3eT0thFXx2Qxw7YWBn4cJoGWVSDMLsQhfOwUkrTNAXhz4HL8vFpnpI1k_3q-p2nQjC0ZBkvMgZKXiTU8IVJURxpkqmWdniQlORsUaUuVK45KzlmpOMSZmrRios8yn-HKD9X-ldCF63de-7d-F3NUb1RKWOVOqJSn2gEi1Xe8vvxY3exoD_y38ANWBnUg</recordid><startdate>20201231</startdate><enddate>20201231</enddate><creator>Agbo, P</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3066-4791</orcidid></search><sort><creationdate>20201231</creationdate><title>J–V Decoupling: Independent Control over Current and Potential in Electrocatalysis</title><author>Agbo, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a280t-48765278b6328d322d85d95e59f17e3a45ba96dd1985f8e8245cc6dbcd1c63013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>C: Energy Conversion and Storage; Energy and Charge Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agbo, P</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agbo, P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>J–V Decoupling: Independent Control over Current and Potential in Electrocatalysis</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2020-12-31</date><risdate>2020</risdate><volume>124</volume><issue>52</issue><spage>28387</spage><epage>28394</epage><pages>28387-28394</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>This report details an approach for circumventing the current–potential coupling constraints present in traditional electrochemical voltammetry. Specifically, a light-dependent method for expanding the region of testable electrochemical conditions from merely the current–voltage coordinates lying on an electrocatalyst’s polarization curve, to a two-dimensional surface defined by the integral of the polarization curve, is introduced. Validation and applicability of the concept are investigated by testing the utility of current density–potential (J–V) decoupling in steering the fate of reactants in electrochemical CO2 reduction toward CO versus H2. Current density and potential are shown to serve as independent handles for controlling electrocatalyst reactivity, rather than codependent quantities. Demonstration of this concept is then used to refine Faradaic yields for CO evolution in a photo-driven electrochemical device operating at steady state. Finally, an explication of J–V decoupling as the light-dependent analog of a biophysical principle governing electron transfers and catalysis in redox-active enzymes, is put forth.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.0c08142</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3066-4791</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2020-12, Vol.124 (52), p.28387-28394
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_acs_jpcc_0c08142
source American Chemical Society Journals
subjects C: Energy Conversion and Storage
Energy and Charge Transport
title J–V Decoupling: Independent Control over Current and Potential in Electrocatalysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A57%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=J%E2%80%93V%20Decoupling:%20Independent%20Control%20over%20Current%20and%20Potential%20in%20Electrocatalysis&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Agbo,%20P&rft.date=2020-12-31&rft.volume=124&rft.issue=52&rft.spage=28387&rft.epage=28394&rft.pages=28387-28394&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.0c08142&rft_dat=%3Cacs_cross%3Eb779757762%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true