Moving beyond the Solvent-Tip Approximation to Determine Site-Specific Variations of Interfacial Water Structure through 3D Force Microscopy

Although interfacial solution structure impacts environmental, biological, and technological phenomena, including colloidal stability, protein assembly, heterogeneous nucleation, and water desalination, its molecular details remain poorly understood. Here, we visualize the three-dimensional (3D) hyd...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2021-01, Vol.125 (2), p.1282-1291
Hauptverfasser: Nakouzi, Elias, Stack, Andrew G, Kerisit, Sebastien, Legg, Benjamin A, Mundy, Christopher J, Schenter, Gregory K, Chun, Jaehun, De Yoreo, James J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1291
container_issue 2
container_start_page 1282
container_title Journal of physical chemistry. C
container_volume 125
creator Nakouzi, Elias
Stack, Andrew G
Kerisit, Sebastien
Legg, Benjamin A
Mundy, Christopher J
Schenter, Gregory K
Chun, Jaehun
De Yoreo, James J
description Although interfacial solution structure impacts environmental, biological, and technological phenomena, including colloidal stability, protein assembly, heterogeneous nucleation, and water desalination, its molecular details remain poorly understood. Here, we visualize the three-dimensional (3D) hydration structure at the boehmite(010)–water interface using fast force mapping (FFM). Using a self-consistent scheme to decouple long-range tip-sample interactions from short-range solvation forces, we obtain the solution structure with lattice resolution. The results are benchmarked against molecular dynamics simulations that explicitly include the effects of the tip with different levels of approximation and systematically account for tip size, chemistry, and confinement effects. We find four laterally structured water layers within 1 nm of the surface, with the highest water densities at sites adjacent to hydroxyl groups. The key features beyond the first two layers can only be predicted using a full-scale simulation of the boehmite–water–silica system. Our findings further reveal a complex relationship between site-specific chemistry, water density, and long-range particle interactions; and present important advances toward quantitative data interpretation in 3D FFM.
doi_str_mv 10.1021/acs.jpcc.0c07901
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcc_0c07901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b105917995</sourcerecordid><originalsourceid>FETCH-LOGICAL-a388t-397c6f181d7e91ecc79e661543586b02357338417b13effed71b5b52d5dd2cc83</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqWwZ-kPIMWO4zhZVi2FSq1YtMAyciZ266qNI8ep6D_w0bgPsWM1V5pz53EReqRkQElMnyW0g00DMCBARE7oFerRnMWRSDi__tOJuEV3bbshhDNCWQ_9zO3e1CtcqoOtK-zXCi_sdq9qHy1Ng4dN4-y32UlvbI29xWPllduZOmDGq2jRKDDaAP6UzpygFluNp3WgtAQjt_hLBo0X3nXgO6fCCme71RqzMZ5YBwrPDTjbgm0O9-hGy22rHi61jz4mL8vRWzR7f52OhrNIsizzEcsFpJpmtBIqpwpA5CpNKU8Yz9KSxIwLxrKEipIypbWqBC15yeOKV1UMkLE-Iue5x8WtU7poXPjRHQpKimOaRUizOKZZXNIMlqez5dSxnavDgf_jvxw8e4Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Moving beyond the Solvent-Tip Approximation to Determine Site-Specific Variations of Interfacial Water Structure through 3D Force Microscopy</title><source>ACS Publications</source><creator>Nakouzi, Elias ; Stack, Andrew G ; Kerisit, Sebastien ; Legg, Benjamin A ; Mundy, Christopher J ; Schenter, Gregory K ; Chun, Jaehun ; De Yoreo, James J</creator><creatorcontrib>Nakouzi, Elias ; Stack, Andrew G ; Kerisit, Sebastien ; Legg, Benjamin A ; Mundy, Christopher J ; Schenter, Gregory K ; Chun, Jaehun ; De Yoreo, James J</creatorcontrib><description>Although interfacial solution structure impacts environmental, biological, and technological phenomena, including colloidal stability, protein assembly, heterogeneous nucleation, and water desalination, its molecular details remain poorly understood. Here, we visualize the three-dimensional (3D) hydration structure at the boehmite(010)–water interface using fast force mapping (FFM). Using a self-consistent scheme to decouple long-range tip-sample interactions from short-range solvation forces, we obtain the solution structure with lattice resolution. The results are benchmarked against molecular dynamics simulations that explicitly include the effects of the tip with different levels of approximation and systematically account for tip size, chemistry, and confinement effects. We find four laterally structured water layers within 1 nm of the surface, with the highest water densities at sites adjacent to hydroxyl groups. The key features beyond the first two layers can only be predicted using a full-scale simulation of the boehmite–water–silica system. Our findings further reveal a complex relationship between site-specific chemistry, water density, and long-range particle interactions; and present important advances toward quantitative data interpretation in 3D FFM.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.0c07901</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Chemical and Catalytic Reactivity at Interfaces</subject><ispartof>Journal of physical chemistry. C, 2021-01, Vol.125 (2), p.1282-1291</ispartof><rights>2020 The Authors. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a388t-397c6f181d7e91ecc79e661543586b02357338417b13effed71b5b52d5dd2cc83</citedby><cites>FETCH-LOGICAL-a388t-397c6f181d7e91ecc79e661543586b02357338417b13effed71b5b52d5dd2cc83</cites><orcidid>0000-0003-0036-8326 ; 0000-0002-7470-9181 ; 0000-0002-9194-6699 ; 0000-0003-1378-5241 ; 0000-0002-2291-6496 ; 0000-0003-4355-3679</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.0c07901$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.0c07901$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids></links><search><creatorcontrib>Nakouzi, Elias</creatorcontrib><creatorcontrib>Stack, Andrew G</creatorcontrib><creatorcontrib>Kerisit, Sebastien</creatorcontrib><creatorcontrib>Legg, Benjamin A</creatorcontrib><creatorcontrib>Mundy, Christopher J</creatorcontrib><creatorcontrib>Schenter, Gregory K</creatorcontrib><creatorcontrib>Chun, Jaehun</creatorcontrib><creatorcontrib>De Yoreo, James J</creatorcontrib><title>Moving beyond the Solvent-Tip Approximation to Determine Site-Specific Variations of Interfacial Water Structure through 3D Force Microscopy</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Although interfacial solution structure impacts environmental, biological, and technological phenomena, including colloidal stability, protein assembly, heterogeneous nucleation, and water desalination, its molecular details remain poorly understood. Here, we visualize the three-dimensional (3D) hydration structure at the boehmite(010)–water interface using fast force mapping (FFM). Using a self-consistent scheme to decouple long-range tip-sample interactions from short-range solvation forces, we obtain the solution structure with lattice resolution. The results are benchmarked against molecular dynamics simulations that explicitly include the effects of the tip with different levels of approximation and systematically account for tip size, chemistry, and confinement effects. We find four laterally structured water layers within 1 nm of the surface, with the highest water densities at sites adjacent to hydroxyl groups. The key features beyond the first two layers can only be predicted using a full-scale simulation of the boehmite–water–silica system. Our findings further reveal a complex relationship between site-specific chemistry, water density, and long-range particle interactions; and present important advances toward quantitative data interpretation in 3D FFM.</description><subject>C: Chemical and Catalytic Reactivity at Interfaces</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqWwZ-kPIMWO4zhZVi2FSq1YtMAyciZ266qNI8ep6D_w0bgPsWM1V5pz53EReqRkQElMnyW0g00DMCBARE7oFerRnMWRSDi__tOJuEV3bbshhDNCWQ_9zO3e1CtcqoOtK-zXCi_sdq9qHy1Ng4dN4-y32UlvbI29xWPllduZOmDGq2jRKDDaAP6UzpygFluNp3WgtAQjt_hLBo0X3nXgO6fCCme71RqzMZ5YBwrPDTjbgm0O9-hGy22rHi61jz4mL8vRWzR7f52OhrNIsizzEcsFpJpmtBIqpwpA5CpNKU8Yz9KSxIwLxrKEipIypbWqBC15yeOKV1UMkLE-Iue5x8WtU7poXPjRHQpKimOaRUizOKZZXNIMlqez5dSxnavDgf_jvxw8e4Y</recordid><startdate>20210121</startdate><enddate>20210121</enddate><creator>Nakouzi, Elias</creator><creator>Stack, Andrew G</creator><creator>Kerisit, Sebastien</creator><creator>Legg, Benjamin A</creator><creator>Mundy, Christopher J</creator><creator>Schenter, Gregory K</creator><creator>Chun, Jaehun</creator><creator>De Yoreo, James J</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0036-8326</orcidid><orcidid>https://orcid.org/0000-0002-7470-9181</orcidid><orcidid>https://orcid.org/0000-0002-9194-6699</orcidid><orcidid>https://orcid.org/0000-0003-1378-5241</orcidid><orcidid>https://orcid.org/0000-0002-2291-6496</orcidid><orcidid>https://orcid.org/0000-0003-4355-3679</orcidid></search><sort><creationdate>20210121</creationdate><title>Moving beyond the Solvent-Tip Approximation to Determine Site-Specific Variations of Interfacial Water Structure through 3D Force Microscopy</title><author>Nakouzi, Elias ; Stack, Andrew G ; Kerisit, Sebastien ; Legg, Benjamin A ; Mundy, Christopher J ; Schenter, Gregory K ; Chun, Jaehun ; De Yoreo, James J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a388t-397c6f181d7e91ecc79e661543586b02357338417b13effed71b5b52d5dd2cc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>C: Chemical and Catalytic Reactivity at Interfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nakouzi, Elias</creatorcontrib><creatorcontrib>Stack, Andrew G</creatorcontrib><creatorcontrib>Kerisit, Sebastien</creatorcontrib><creatorcontrib>Legg, Benjamin A</creatorcontrib><creatorcontrib>Mundy, Christopher J</creatorcontrib><creatorcontrib>Schenter, Gregory K</creatorcontrib><creatorcontrib>Chun, Jaehun</creatorcontrib><creatorcontrib>De Yoreo, James J</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nakouzi, Elias</au><au>Stack, Andrew G</au><au>Kerisit, Sebastien</au><au>Legg, Benjamin A</au><au>Mundy, Christopher J</au><au>Schenter, Gregory K</au><au>Chun, Jaehun</au><au>De Yoreo, James J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Moving beyond the Solvent-Tip Approximation to Determine Site-Specific Variations of Interfacial Water Structure through 3D Force Microscopy</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2021-01-21</date><risdate>2021</risdate><volume>125</volume><issue>2</issue><spage>1282</spage><epage>1291</epage><pages>1282-1291</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Although interfacial solution structure impacts environmental, biological, and technological phenomena, including colloidal stability, protein assembly, heterogeneous nucleation, and water desalination, its molecular details remain poorly understood. Here, we visualize the three-dimensional (3D) hydration structure at the boehmite(010)–water interface using fast force mapping (FFM). Using a self-consistent scheme to decouple long-range tip-sample interactions from short-range solvation forces, we obtain the solution structure with lattice resolution. The results are benchmarked against molecular dynamics simulations that explicitly include the effects of the tip with different levels of approximation and systematically account for tip size, chemistry, and confinement effects. We find four laterally structured water layers within 1 nm of the surface, with the highest water densities at sites adjacent to hydroxyl groups. The key features beyond the first two layers can only be predicted using a full-scale simulation of the boehmite–water–silica system. Our findings further reveal a complex relationship between site-specific chemistry, water density, and long-range particle interactions; and present important advances toward quantitative data interpretation in 3D FFM.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.0c07901</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0036-8326</orcidid><orcidid>https://orcid.org/0000-0002-7470-9181</orcidid><orcidid>https://orcid.org/0000-0002-9194-6699</orcidid><orcidid>https://orcid.org/0000-0003-1378-5241</orcidid><orcidid>https://orcid.org/0000-0002-2291-6496</orcidid><orcidid>https://orcid.org/0000-0003-4355-3679</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2021-01, Vol.125 (2), p.1282-1291
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_acs_jpcc_0c07901
source ACS Publications
subjects C: Chemical and Catalytic Reactivity at Interfaces
title Moving beyond the Solvent-Tip Approximation to Determine Site-Specific Variations of Interfacial Water Structure through 3D Force Microscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A55%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Moving%20beyond%20the%20Solvent-Tip%20Approximation%20to%20Determine%20Site-Specific%20Variations%20of%20Interfacial%20Water%20Structure%20through%203D%20Force%20Microscopy&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Nakouzi,%20Elias&rft.date=2021-01-21&rft.volume=125&rft.issue=2&rft.spage=1282&rft.epage=1291&rft.pages=1282-1291&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.0c07901&rft_dat=%3Cacs_cross%3Eb105917995%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true