Moving beyond the Solvent-Tip Approximation to Determine Site-Specific Variations of Interfacial Water Structure through 3D Force Microscopy
Although interfacial solution structure impacts environmental, biological, and technological phenomena, including colloidal stability, protein assembly, heterogeneous nucleation, and water desalination, its molecular details remain poorly understood. Here, we visualize the three-dimensional (3D) hyd...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2021-01, Vol.125 (2), p.1282-1291 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1291 |
---|---|
container_issue | 2 |
container_start_page | 1282 |
container_title | Journal of physical chemistry. C |
container_volume | 125 |
creator | Nakouzi, Elias Stack, Andrew G Kerisit, Sebastien Legg, Benjamin A Mundy, Christopher J Schenter, Gregory K Chun, Jaehun De Yoreo, James J |
description | Although interfacial solution structure impacts environmental, biological, and technological phenomena, including colloidal stability, protein assembly, heterogeneous nucleation, and water desalination, its molecular details remain poorly understood. Here, we visualize the three-dimensional (3D) hydration structure at the boehmite(010)–water interface using fast force mapping (FFM). Using a self-consistent scheme to decouple long-range tip-sample interactions from short-range solvation forces, we obtain the solution structure with lattice resolution. The results are benchmarked against molecular dynamics simulations that explicitly include the effects of the tip with different levels of approximation and systematically account for tip size, chemistry, and confinement effects. We find four laterally structured water layers within 1 nm of the surface, with the highest water densities at sites adjacent to hydroxyl groups. The key features beyond the first two layers can only be predicted using a full-scale simulation of the boehmite–water–silica system. Our findings further reveal a complex relationship between site-specific chemistry, water density, and long-range particle interactions; and present important advances toward quantitative data interpretation in 3D FFM. |
doi_str_mv | 10.1021/acs.jpcc.0c07901 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcc_0c07901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b105917995</sourcerecordid><originalsourceid>FETCH-LOGICAL-a388t-397c6f181d7e91ecc79e661543586b02357338417b13effed71b5b52d5dd2cc83</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqWwZ-kPIMWO4zhZVi2FSq1YtMAyciZ266qNI8ep6D_w0bgPsWM1V5pz53EReqRkQElMnyW0g00DMCBARE7oFerRnMWRSDi__tOJuEV3bbshhDNCWQ_9zO3e1CtcqoOtK-zXCi_sdq9qHy1Ng4dN4-y32UlvbI29xWPllduZOmDGq2jRKDDaAP6UzpygFluNp3WgtAQjt_hLBo0X3nXgO6fCCme71RqzMZ5YBwrPDTjbgm0O9-hGy22rHi61jz4mL8vRWzR7f52OhrNIsizzEcsFpJpmtBIqpwpA5CpNKU8Yz9KSxIwLxrKEipIypbWqBC15yeOKV1UMkLE-Iue5x8WtU7poXPjRHQpKimOaRUizOKZZXNIMlqez5dSxnavDgf_jvxw8e4Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Moving beyond the Solvent-Tip Approximation to Determine Site-Specific Variations of Interfacial Water Structure through 3D Force Microscopy</title><source>ACS Publications</source><creator>Nakouzi, Elias ; Stack, Andrew G ; Kerisit, Sebastien ; Legg, Benjamin A ; Mundy, Christopher J ; Schenter, Gregory K ; Chun, Jaehun ; De Yoreo, James J</creator><creatorcontrib>Nakouzi, Elias ; Stack, Andrew G ; Kerisit, Sebastien ; Legg, Benjamin A ; Mundy, Christopher J ; Schenter, Gregory K ; Chun, Jaehun ; De Yoreo, James J</creatorcontrib><description>Although interfacial solution structure impacts environmental, biological, and technological phenomena, including colloidal stability, protein assembly, heterogeneous nucleation, and water desalination, its molecular details remain poorly understood. Here, we visualize the three-dimensional (3D) hydration structure at the boehmite(010)–water interface using fast force mapping (FFM). Using a self-consistent scheme to decouple long-range tip-sample interactions from short-range solvation forces, we obtain the solution structure with lattice resolution. The results are benchmarked against molecular dynamics simulations that explicitly include the effects of the tip with different levels of approximation and systematically account for tip size, chemistry, and confinement effects. We find four laterally structured water layers within 1 nm of the surface, with the highest water densities at sites adjacent to hydroxyl groups. The key features beyond the first two layers can only be predicted using a full-scale simulation of the boehmite–water–silica system. Our findings further reveal a complex relationship between site-specific chemistry, water density, and long-range particle interactions; and present important advances toward quantitative data interpretation in 3D FFM.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.0c07901</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Chemical and Catalytic Reactivity at Interfaces</subject><ispartof>Journal of physical chemistry. C, 2021-01, Vol.125 (2), p.1282-1291</ispartof><rights>2020 The Authors. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a388t-397c6f181d7e91ecc79e661543586b02357338417b13effed71b5b52d5dd2cc83</citedby><cites>FETCH-LOGICAL-a388t-397c6f181d7e91ecc79e661543586b02357338417b13effed71b5b52d5dd2cc83</cites><orcidid>0000-0003-0036-8326 ; 0000-0002-7470-9181 ; 0000-0002-9194-6699 ; 0000-0003-1378-5241 ; 0000-0002-2291-6496 ; 0000-0003-4355-3679</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.0c07901$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.0c07901$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids></links><search><creatorcontrib>Nakouzi, Elias</creatorcontrib><creatorcontrib>Stack, Andrew G</creatorcontrib><creatorcontrib>Kerisit, Sebastien</creatorcontrib><creatorcontrib>Legg, Benjamin A</creatorcontrib><creatorcontrib>Mundy, Christopher J</creatorcontrib><creatorcontrib>Schenter, Gregory K</creatorcontrib><creatorcontrib>Chun, Jaehun</creatorcontrib><creatorcontrib>De Yoreo, James J</creatorcontrib><title>Moving beyond the Solvent-Tip Approximation to Determine Site-Specific Variations of Interfacial Water Structure through 3D Force Microscopy</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Although interfacial solution structure impacts environmental, biological, and technological phenomena, including colloidal stability, protein assembly, heterogeneous nucleation, and water desalination, its molecular details remain poorly understood. Here, we visualize the three-dimensional (3D) hydration structure at the boehmite(010)–water interface using fast force mapping (FFM). Using a self-consistent scheme to decouple long-range tip-sample interactions from short-range solvation forces, we obtain the solution structure with lattice resolution. The results are benchmarked against molecular dynamics simulations that explicitly include the effects of the tip with different levels of approximation and systematically account for tip size, chemistry, and confinement effects. We find four laterally structured water layers within 1 nm of the surface, with the highest water densities at sites adjacent to hydroxyl groups. The key features beyond the first two layers can only be predicted using a full-scale simulation of the boehmite–water–silica system. Our findings further reveal a complex relationship between site-specific chemistry, water density, and long-range particle interactions; and present important advances toward quantitative data interpretation in 3D FFM.</description><subject>C: Chemical and Catalytic Reactivity at Interfaces</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqWwZ-kPIMWO4zhZVi2FSq1YtMAyciZ266qNI8ep6D_w0bgPsWM1V5pz53EReqRkQElMnyW0g00DMCBARE7oFerRnMWRSDi__tOJuEV3bbshhDNCWQ_9zO3e1CtcqoOtK-zXCi_sdq9qHy1Ng4dN4-y32UlvbI29xWPllduZOmDGq2jRKDDaAP6UzpygFluNp3WgtAQjt_hLBo0X3nXgO6fCCme71RqzMZ5YBwrPDTjbgm0O9-hGy22rHi61jz4mL8vRWzR7f52OhrNIsizzEcsFpJpmtBIqpwpA5CpNKU8Yz9KSxIwLxrKEipIypbWqBC15yeOKV1UMkLE-Iue5x8WtU7poXPjRHQpKimOaRUizOKZZXNIMlqez5dSxnavDgf_jvxw8e4Y</recordid><startdate>20210121</startdate><enddate>20210121</enddate><creator>Nakouzi, Elias</creator><creator>Stack, Andrew G</creator><creator>Kerisit, Sebastien</creator><creator>Legg, Benjamin A</creator><creator>Mundy, Christopher J</creator><creator>Schenter, Gregory K</creator><creator>Chun, Jaehun</creator><creator>De Yoreo, James J</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0036-8326</orcidid><orcidid>https://orcid.org/0000-0002-7470-9181</orcidid><orcidid>https://orcid.org/0000-0002-9194-6699</orcidid><orcidid>https://orcid.org/0000-0003-1378-5241</orcidid><orcidid>https://orcid.org/0000-0002-2291-6496</orcidid><orcidid>https://orcid.org/0000-0003-4355-3679</orcidid></search><sort><creationdate>20210121</creationdate><title>Moving beyond the Solvent-Tip Approximation to Determine Site-Specific Variations of Interfacial Water Structure through 3D Force Microscopy</title><author>Nakouzi, Elias ; Stack, Andrew G ; Kerisit, Sebastien ; Legg, Benjamin A ; Mundy, Christopher J ; Schenter, Gregory K ; Chun, Jaehun ; De Yoreo, James J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a388t-397c6f181d7e91ecc79e661543586b02357338417b13effed71b5b52d5dd2cc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>C: Chemical and Catalytic Reactivity at Interfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nakouzi, Elias</creatorcontrib><creatorcontrib>Stack, Andrew G</creatorcontrib><creatorcontrib>Kerisit, Sebastien</creatorcontrib><creatorcontrib>Legg, Benjamin A</creatorcontrib><creatorcontrib>Mundy, Christopher J</creatorcontrib><creatorcontrib>Schenter, Gregory K</creatorcontrib><creatorcontrib>Chun, Jaehun</creatorcontrib><creatorcontrib>De Yoreo, James J</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nakouzi, Elias</au><au>Stack, Andrew G</au><au>Kerisit, Sebastien</au><au>Legg, Benjamin A</au><au>Mundy, Christopher J</au><au>Schenter, Gregory K</au><au>Chun, Jaehun</au><au>De Yoreo, James J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Moving beyond the Solvent-Tip Approximation to Determine Site-Specific Variations of Interfacial Water Structure through 3D Force Microscopy</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2021-01-21</date><risdate>2021</risdate><volume>125</volume><issue>2</issue><spage>1282</spage><epage>1291</epage><pages>1282-1291</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Although interfacial solution structure impacts environmental, biological, and technological phenomena, including colloidal stability, protein assembly, heterogeneous nucleation, and water desalination, its molecular details remain poorly understood. Here, we visualize the three-dimensional (3D) hydration structure at the boehmite(010)–water interface using fast force mapping (FFM). Using a self-consistent scheme to decouple long-range tip-sample interactions from short-range solvation forces, we obtain the solution structure with lattice resolution. The results are benchmarked against molecular dynamics simulations that explicitly include the effects of the tip with different levels of approximation and systematically account for tip size, chemistry, and confinement effects. We find four laterally structured water layers within 1 nm of the surface, with the highest water densities at sites adjacent to hydroxyl groups. The key features beyond the first two layers can only be predicted using a full-scale simulation of the boehmite–water–silica system. Our findings further reveal a complex relationship between site-specific chemistry, water density, and long-range particle interactions; and present important advances toward quantitative data interpretation in 3D FFM.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.0c07901</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0036-8326</orcidid><orcidid>https://orcid.org/0000-0002-7470-9181</orcidid><orcidid>https://orcid.org/0000-0002-9194-6699</orcidid><orcidid>https://orcid.org/0000-0003-1378-5241</orcidid><orcidid>https://orcid.org/0000-0002-2291-6496</orcidid><orcidid>https://orcid.org/0000-0003-4355-3679</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2021-01, Vol.125 (2), p.1282-1291 |
issn | 1932-7447 1932-7455 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acs_jpcc_0c07901 |
source | ACS Publications |
subjects | C: Chemical and Catalytic Reactivity at Interfaces |
title | Moving beyond the Solvent-Tip Approximation to Determine Site-Specific Variations of Interfacial Water Structure through 3D Force Microscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A55%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Moving%20beyond%20the%20Solvent-Tip%20Approximation%20to%20Determine%20Site-Specific%20Variations%20of%20Interfacial%20Water%20Structure%20through%203D%20Force%20Microscopy&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Nakouzi,%20Elias&rft.date=2021-01-21&rft.volume=125&rft.issue=2&rft.spage=1282&rft.epage=1291&rft.pages=1282-1291&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.0c07901&rft_dat=%3Cacs_cross%3Eb105917995%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |