Plasma-Catalytic Ammonia Synthesis in a DBD Plasma: Role of Microdischarges and Their Afterglows

Plasma-catalytic ammonia synthesis is receiving ever increasing attention, especially in packed bed dielectric barrier discharge (DBD) reactors. The latter typically operate in the filamentary regime when used for gas conversion applications. While DBDs are in principle well understood and already a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2020-10, Vol.124 (42), p.22871-22883
Hauptverfasser: van ‘t Veer, K, Engelmann, Y, Reniers, F, Bogaerts, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22883
container_issue 42
container_start_page 22871
container_title Journal of physical chemistry. C
container_volume 124
creator van ‘t Veer, K
Engelmann, Y
Reniers, F
Bogaerts, A
description Plasma-catalytic ammonia synthesis is receiving ever increasing attention, especially in packed bed dielectric barrier discharge (DBD) reactors. The latter typically operate in the filamentary regime when used for gas conversion applications. While DBDs are in principle well understood and already applied in the industry, the incorporation of packing materials and catalytic surfaces considerably adds to the complexity of the plasma physics and chemistry governing the ammonia formation. We employ a plasma kinetics model to gain insights into the ammonia formation mechanisms, paying special attention to the role of filamentary microdischarges and their afterglows. During the microdischarges, the synthesized ammonia is actually decomposed, but the radicals created upon electron impact dissociation of N2 and H2 and the subsequent catalytic reactions cause a net ammonia gain in the afterglows of the microdischarges. Under our plasma conditions, electron impact dissociation of N2 in the gas phase followed by the adsorption of N atoms is identified as a rate-limiting step, instead of dissociative adsorption of N2 on the catalyst surface. Both elementary Eley–Rideal and Langmuir–Hinshelwood reaction steps can be found important in plasma-catalytic NH3 synthesis.
doi_str_mv 10.1021/acs.jpcc.0c05110
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcc_0c05110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a397538892</sourcerecordid><originalsourceid>FETCH-LOGICAL-a322t-ca60a0f78fe4fc336e2de0cd638719af2e6514716e17ff0c26ca1810525637a33</originalsourceid><addsrcrecordid>eNp1kEtPwzAQhC0EEqVw5-gfQMquHcctt9LykopAUM5h5ditqzwqOwjl35PSihunWWlmVqOPsUuEEYLAazJxtNkaMwIDChGO2AAnUiQ6Ver47071KTuLcQOgJKAcsM_XkmJFyYxaKrvWGz6tqqb2xN-7ul3b6CP3NSc-v53zffaGvzWl5Y3jz96EpvDRrCmsbORUF3y5tj7wqWttWJXNdzxnJ47KaC8OOmQf93fL2WOyeHl4mk0XCUkh2sRQBgROj51NnZEys6KwYIpMjjVOyAmbKUw1Zha1c2BEZgjHCEqoTGqScshg_7efFGOwLt8GX1HocoR8RyjvCeU7QvmBUF-52ld-neYr1P3A_-M_IHpp2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Plasma-Catalytic Ammonia Synthesis in a DBD Plasma: Role of Microdischarges and Their Afterglows</title><source>ACS Publications</source><creator>van ‘t Veer, K ; Engelmann, Y ; Reniers, F ; Bogaerts, A</creator><creatorcontrib>van ‘t Veer, K ; Engelmann, Y ; Reniers, F ; Bogaerts, A</creatorcontrib><description>Plasma-catalytic ammonia synthesis is receiving ever increasing attention, especially in packed bed dielectric barrier discharge (DBD) reactors. The latter typically operate in the filamentary regime when used for gas conversion applications. While DBDs are in principle well understood and already applied in the industry, the incorporation of packing materials and catalytic surfaces considerably adds to the complexity of the plasma physics and chemistry governing the ammonia formation. We employ a plasma kinetics model to gain insights into the ammonia formation mechanisms, paying special attention to the role of filamentary microdischarges and their afterglows. During the microdischarges, the synthesized ammonia is actually decomposed, but the radicals created upon electron impact dissociation of N2 and H2 and the subsequent catalytic reactions cause a net ammonia gain in the afterglows of the microdischarges. Under our plasma conditions, electron impact dissociation of N2 in the gas phase followed by the adsorption of N atoms is identified as a rate-limiting step, instead of dissociative adsorption of N2 on the catalyst surface. Both elementary Eley–Rideal and Langmuir–Hinshelwood reaction steps can be found important in plasma-catalytic NH3 synthesis.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.0c05110</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Energy Conversion and Storage; Energy and Charge Transport</subject><ispartof>Journal of physical chemistry. C, 2020-10, Vol.124 (42), p.22871-22883</ispartof><rights>2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a322t-ca60a0f78fe4fc336e2de0cd638719af2e6514716e17ff0c26ca1810525637a33</citedby><cites>FETCH-LOGICAL-a322t-ca60a0f78fe4fc336e2de0cd638719af2e6514716e17ff0c26ca1810525637a33</cites><orcidid>0000-0001-9875-6460 ; 0000-0003-2540-467X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.0c05110$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.0c05110$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>van ‘t Veer, K</creatorcontrib><creatorcontrib>Engelmann, Y</creatorcontrib><creatorcontrib>Reniers, F</creatorcontrib><creatorcontrib>Bogaerts, A</creatorcontrib><title>Plasma-Catalytic Ammonia Synthesis in a DBD Plasma: Role of Microdischarges and Their Afterglows</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Plasma-catalytic ammonia synthesis is receiving ever increasing attention, especially in packed bed dielectric barrier discharge (DBD) reactors. The latter typically operate in the filamentary regime when used for gas conversion applications. While DBDs are in principle well understood and already applied in the industry, the incorporation of packing materials and catalytic surfaces considerably adds to the complexity of the plasma physics and chemistry governing the ammonia formation. We employ a plasma kinetics model to gain insights into the ammonia formation mechanisms, paying special attention to the role of filamentary microdischarges and their afterglows. During the microdischarges, the synthesized ammonia is actually decomposed, but the radicals created upon electron impact dissociation of N2 and H2 and the subsequent catalytic reactions cause a net ammonia gain in the afterglows of the microdischarges. Under our plasma conditions, electron impact dissociation of N2 in the gas phase followed by the adsorption of N atoms is identified as a rate-limiting step, instead of dissociative adsorption of N2 on the catalyst surface. Both elementary Eley–Rideal and Langmuir–Hinshelwood reaction steps can be found important in plasma-catalytic NH3 synthesis.</description><subject>C: Energy Conversion and Storage; Energy and Charge Transport</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kEtPwzAQhC0EEqVw5-gfQMquHcctt9LykopAUM5h5ditqzwqOwjl35PSihunWWlmVqOPsUuEEYLAazJxtNkaMwIDChGO2AAnUiQ6Ver47071KTuLcQOgJKAcsM_XkmJFyYxaKrvWGz6tqqb2xN-7ul3b6CP3NSc-v53zffaGvzWl5Y3jz96EpvDRrCmsbORUF3y5tj7wqWttWJXNdzxnJ47KaC8OOmQf93fL2WOyeHl4mk0XCUkh2sRQBgROj51NnZEys6KwYIpMjjVOyAmbKUw1Zha1c2BEZgjHCEqoTGqScshg_7efFGOwLt8GX1HocoR8RyjvCeU7QvmBUF-52ld-neYr1P3A_-M_IHpp2Q</recordid><startdate>20201022</startdate><enddate>20201022</enddate><creator>van ‘t Veer, K</creator><creator>Engelmann, Y</creator><creator>Reniers, F</creator><creator>Bogaerts, A</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9875-6460</orcidid><orcidid>https://orcid.org/0000-0003-2540-467X</orcidid></search><sort><creationdate>20201022</creationdate><title>Plasma-Catalytic Ammonia Synthesis in a DBD Plasma: Role of Microdischarges and Their Afterglows</title><author>van ‘t Veer, K ; Engelmann, Y ; Reniers, F ; Bogaerts, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a322t-ca60a0f78fe4fc336e2de0cd638719af2e6514716e17ff0c26ca1810525637a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>C: Energy Conversion and Storage; Energy and Charge Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van ‘t Veer, K</creatorcontrib><creatorcontrib>Engelmann, Y</creatorcontrib><creatorcontrib>Reniers, F</creatorcontrib><creatorcontrib>Bogaerts, A</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van ‘t Veer, K</au><au>Engelmann, Y</au><au>Reniers, F</au><au>Bogaerts, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasma-Catalytic Ammonia Synthesis in a DBD Plasma: Role of Microdischarges and Their Afterglows</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2020-10-22</date><risdate>2020</risdate><volume>124</volume><issue>42</issue><spage>22871</spage><epage>22883</epage><pages>22871-22883</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Plasma-catalytic ammonia synthesis is receiving ever increasing attention, especially in packed bed dielectric barrier discharge (DBD) reactors. The latter typically operate in the filamentary regime when used for gas conversion applications. While DBDs are in principle well understood and already applied in the industry, the incorporation of packing materials and catalytic surfaces considerably adds to the complexity of the plasma physics and chemistry governing the ammonia formation. We employ a plasma kinetics model to gain insights into the ammonia formation mechanisms, paying special attention to the role of filamentary microdischarges and their afterglows. During the microdischarges, the synthesized ammonia is actually decomposed, but the radicals created upon electron impact dissociation of N2 and H2 and the subsequent catalytic reactions cause a net ammonia gain in the afterglows of the microdischarges. Under our plasma conditions, electron impact dissociation of N2 in the gas phase followed by the adsorption of N atoms is identified as a rate-limiting step, instead of dissociative adsorption of N2 on the catalyst surface. Both elementary Eley–Rideal and Langmuir–Hinshelwood reaction steps can be found important in plasma-catalytic NH3 synthesis.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.0c05110</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9875-6460</orcidid><orcidid>https://orcid.org/0000-0003-2540-467X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2020-10, Vol.124 (42), p.22871-22883
issn 1932-7447
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_acs_jpcc_0c05110
source ACS Publications
subjects C: Energy Conversion and Storage
Energy and Charge Transport
title Plasma-Catalytic Ammonia Synthesis in a DBD Plasma: Role of Microdischarges and Their Afterglows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A36%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasma-Catalytic%20Ammonia%20Synthesis%20in%20a%20DBD%20Plasma:%20Role%20of%20Microdischarges%20and%20Their%20Afterglows&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=van%20%E2%80%98t%20Veer,%20K&rft.date=2020-10-22&rft.volume=124&rft.issue=42&rft.spage=22871&rft.epage=22883&rft.pages=22871-22883&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.0c05110&rft_dat=%3Cacs_cross%3Ea397538892%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true