Modification of Physicochemical Properties and Boosting Electrical Conductivity of Reduced Graphene Oxide Aerogels by Postsynthesis Treatment

Electrically conductive graphene aerogels are attracting great interest as functional materials. Nevertheless, graphene aerogels synthesized from graphene oxide usually exhibit low electrical conductivity. In order to increase conductivity, herein a postsynthesis thermal treatment at several tempera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2020-06, Vol.124 (25), p.13739-13752
Hauptverfasser: Carrera, Clara, González-Domı́nguez, José Miguel, Pascual, Francisco Javier, Ansón-Casaos, Alejandro, Benito, Ana M, Maser, Wolfgang K, García-Bordejé, Enrique
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Electrically conductive graphene aerogels are attracting great interest as functional materials. Nevertheless, graphene aerogels synthesized from graphene oxide usually exhibit low electrical conductivity. In order to increase conductivity, herein a postsynthesis thermal treatment at several temperatures (from 300 to 1000 °C) has been applied to pristine reduced graphene oxide aerogels under two different atmospheres, namely, inert Ar flow and isopropanol+H2 flow. Upon thermal treatment under Ar flow, the electrical conductivity of aerogel upscales with the treatment temperature. More remarkably, the electrical conductivity becomes 1 order of magnitude larger when the thermal treatment is carried out under isopropanol+H2 instead of under Ar, while maintaining a very low density and porous structure. The electrical conductivity achieved is exceptionally high for such a lightweight and porous material. The exhaustive characterization allowed disclosing that the generation of carbon links between the reduced graphene oxide nanosheets is the reason for this enhancement. The electrically conductive aerogels have excellent prospects for application as scaffolds for energy storage or biomedical applications.
ISSN:1932-7447
1932-7455
DOI:10.1021/acs.jpcc.0c02362