How the Nature of the Alkali Metal Cations Influences the Double-Layer Capacitance of Cu, Au, and Pt Single-Crystal Electrodes
In this work, we have investigated the influence of alkali metal cations on the electrical double-layer (EDL) properties for various metal electrodes. Using electrochemical impedance spectroscopy, we demonstrate that those cations significantly affect the EDL capacitance in the case of single-crysta...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2020-06, Vol.124 (23), p.12442-12447 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, we have investigated the influence of alkali metal cations on the electrical double-layer (EDL) properties for various metal electrodes. Using electrochemical impedance spectroscopy, we demonstrate that those cations significantly affect the EDL capacitance in the case of single-crystalline Cu(111), Cu(100), Au(111), Pt(111), stepped Pt(775), and kinked Pt(12 10 5) electrodes in 0.05 M MeClO4 (Me+ = Li+, Na+, K+, Rb+, and Cs+) electrolytes. For all the electrodes, the capacitance always linearly increases with decreasing hydration energy of Me+ in the following order: Li+ < Na+ < K+ < Rb+ < Cs+. Moreover, we estimate the effective concentrations of the alkali metal cations near the electrode surfaces by correlating the capacitances with the relative permittivity. For all the electrodes, the concentrations near the electrode surface were calculated to be similar to 60 to 80 times higher than in the bulk solutions. |
---|---|
ISSN: | 1932-7447 1932-7455 |
DOI: | 10.1021/acs.jpcc.0c01715 |