Selenium Substitution Enhances Reverse Intersystem Crossing in a Delayed Fluorescence Emitter

Organic emitters exhibiting delayed fluorescence (DF) are promising luminescent materials for next-generation organic light-emitting diodes (OLEDs). Faster intersystem crossing rates and shorter emission lifetimes can be achieved in luminescent molecules through the incorporation of heavy atoms, whi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2020-03, Vol.124 (11), p.6364-6370
Hauptverfasser: Drummond, Bluebell H, Hoover, Gabrielle C, Gillett, Alexander J, Aizawa, Naoya, Myers, William K, McAllister, Bryony T, Jones, Saul T. E, Pu, Yong-Jin, Credgington, Dan, Seferos, Dwight S
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6370
container_issue 11
container_start_page 6364
container_title Journal of physical chemistry. C
container_volume 124
creator Drummond, Bluebell H
Hoover, Gabrielle C
Gillett, Alexander J
Aizawa, Naoya
Myers, William K
McAllister, Bryony T
Jones, Saul T. E
Pu, Yong-Jin
Credgington, Dan
Seferos, Dwight S
description Organic emitters exhibiting delayed fluorescence (DF) are promising luminescent materials for next-generation organic light-emitting diodes (OLEDs). Faster intersystem crossing rates and shorter emission lifetimes can be achieved in luminescent molecules through the incorporation of heavy atoms, which enhance spin–orbit coupling and promote intersystem crossing between singlet and triplet states. DF molecules often contain a sulfur atom, and reports of selenium-containing DF OLEDs also exist. However, the literature lacks a direct exploration of the effect of spin–orbit coupling on reverse intersystem crossing in a delayed fluorescence emitter by the substitution of selenium for sulfur. Here we show that substitution of selenium for sulfur in a modified thioxanthenone-triphenylamine analogue increases the rate of forward intersystem crossing by a factor of over 250 and the rate of reverse intersystem by a factor of 22. We attribute the increased rates to enhanced spin–orbit coupling from heavy atom substitution, and computational and electron spin resonance studies support this. This work provides an insight into future molecular design strategies for heavy-atom-containing, DF emitters.
doi_str_mv 10.1021/acs.jpcc.0c01499
format Article
fullrecord <record><control><sourceid>acs_swepu</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcc_0c01499</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a664483506</sourcerecordid><originalsourceid>FETCH-LOGICAL-a388t-409e5799c1f3e1d12fe14c04e890d4b47a53066d4d3b32a7ef5eb8b47a12201d3</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EEqVw5-gHIMWOnSY-Vv2BSpWQKHBDluNsiqvEqewElLfHoVVvnHa1O99qZxC6p2RCSUwflfaT_UHrCdGEciEu0IgKFkcpT5LLc8_Ta3Tj_Z6QhBHKRuhzCxVY09V42-W-NW3Xmsbipf1SVoPHr_ANzgNe2zbU3rdQ47lrvDd2h43FCi-gUj0UeFV1jQOvIXB4WZs2ALfoqlSVh7tTHaP31fJt_hxtXp7W89kmUizL2ogTAUkqhKYlA1rQuATKNeGQCVLwnKcqfDudFrxgOYtVCmUCeTbMaRwTWrAxio53_Q8culwenKmV62WjjFyYj5ls3E5WppMxJYKmQU-Oej1YcVCeCUrkEKcMccohTnmKMyAPR-Rv03TOBkP_y38BYZJ6ww</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Selenium Substitution Enhances Reverse Intersystem Crossing in a Delayed Fluorescence Emitter</title><source>ACS Publications</source><creator>Drummond, Bluebell H ; Hoover, Gabrielle C ; Gillett, Alexander J ; Aizawa, Naoya ; Myers, William K ; McAllister, Bryony T ; Jones, Saul T. E ; Pu, Yong-Jin ; Credgington, Dan ; Seferos, Dwight S</creator><creatorcontrib>Drummond, Bluebell H ; Hoover, Gabrielle C ; Gillett, Alexander J ; Aizawa, Naoya ; Myers, William K ; McAllister, Bryony T ; Jones, Saul T. E ; Pu, Yong-Jin ; Credgington, Dan ; Seferos, Dwight S</creatorcontrib><description>Organic emitters exhibiting delayed fluorescence (DF) are promising luminescent materials for next-generation organic light-emitting diodes (OLEDs). Faster intersystem crossing rates and shorter emission lifetimes can be achieved in luminescent molecules through the incorporation of heavy atoms, which enhance spin–orbit coupling and promote intersystem crossing between singlet and triplet states. DF molecules often contain a sulfur atom, and reports of selenium-containing DF OLEDs also exist. However, the literature lacks a direct exploration of the effect of spin–orbit coupling on reverse intersystem crossing in a delayed fluorescence emitter by the substitution of selenium for sulfur. Here we show that substitution of selenium for sulfur in a modified thioxanthenone-triphenylamine analogue increases the rate of forward intersystem crossing by a factor of over 250 and the rate of reverse intersystem by a factor of 22. We attribute the increased rates to enhanced spin–orbit coupling from heavy atom substitution, and computational and electron spin resonance studies support this. This work provides an insight into future molecular design strategies for heavy-atom-containing, DF emitters.</description><identifier>ISSN: 1932-7447</identifier><identifier>ISSN: 1932-7455</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.0c01499</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of physical chemistry. C, 2020-03, Vol.124 (11), p.6364-6370</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a388t-409e5799c1f3e1d12fe14c04e890d4b47a53066d4d3b32a7ef5eb8b47a12201d3</citedby><cites>FETCH-LOGICAL-a388t-409e5799c1f3e1d12fe14c04e890d4b47a53066d4d3b32a7ef5eb8b47a12201d3</cites><orcidid>0000-0003-3841-2417 ; 0000-0001-6007-2530 ; 0000-0003-4673-4512 ; 0000-0001-5935-9112 ; 0000-0001-8742-8058 ; 0000-0001-5940-8631</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.0c01499$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.0c01499$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-210917$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Drummond, Bluebell H</creatorcontrib><creatorcontrib>Hoover, Gabrielle C</creatorcontrib><creatorcontrib>Gillett, Alexander J</creatorcontrib><creatorcontrib>Aizawa, Naoya</creatorcontrib><creatorcontrib>Myers, William K</creatorcontrib><creatorcontrib>McAllister, Bryony T</creatorcontrib><creatorcontrib>Jones, Saul T. E</creatorcontrib><creatorcontrib>Pu, Yong-Jin</creatorcontrib><creatorcontrib>Credgington, Dan</creatorcontrib><creatorcontrib>Seferos, Dwight S</creatorcontrib><title>Selenium Substitution Enhances Reverse Intersystem Crossing in a Delayed Fluorescence Emitter</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Organic emitters exhibiting delayed fluorescence (DF) are promising luminescent materials for next-generation organic light-emitting diodes (OLEDs). Faster intersystem crossing rates and shorter emission lifetimes can be achieved in luminescent molecules through the incorporation of heavy atoms, which enhance spin–orbit coupling and promote intersystem crossing between singlet and triplet states. DF molecules often contain a sulfur atom, and reports of selenium-containing DF OLEDs also exist. However, the literature lacks a direct exploration of the effect of spin–orbit coupling on reverse intersystem crossing in a delayed fluorescence emitter by the substitution of selenium for sulfur. Here we show that substitution of selenium for sulfur in a modified thioxanthenone-triphenylamine analogue increases the rate of forward intersystem crossing by a factor of over 250 and the rate of reverse intersystem by a factor of 22. We attribute the increased rates to enhanced spin–orbit coupling from heavy atom substitution, and computational and electron spin resonance studies support this. This work provides an insight into future molecular design strategies for heavy-atom-containing, DF emitters.</description><issn>1932-7447</issn><issn>1932-7455</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OwzAQhC0EEqVw5-gHIMWOnSY-Vv2BSpWQKHBDluNsiqvEqewElLfHoVVvnHa1O99qZxC6p2RCSUwflfaT_UHrCdGEciEu0IgKFkcpT5LLc8_Ta3Tj_Z6QhBHKRuhzCxVY09V42-W-NW3Xmsbipf1SVoPHr_ANzgNe2zbU3rdQ47lrvDd2h43FCi-gUj0UeFV1jQOvIXB4WZs2ALfoqlSVh7tTHaP31fJt_hxtXp7W89kmUizL2ogTAUkqhKYlA1rQuATKNeGQCVLwnKcqfDudFrxgOYtVCmUCeTbMaRwTWrAxio53_Q8culwenKmV62WjjFyYj5ls3E5WppMxJYKmQU-Oej1YcVCeCUrkEKcMccohTnmKMyAPR-Rv03TOBkP_y38BYZJ6ww</recordid><startdate>20200319</startdate><enddate>20200319</enddate><creator>Drummond, Bluebell H</creator><creator>Hoover, Gabrielle C</creator><creator>Gillett, Alexander J</creator><creator>Aizawa, Naoya</creator><creator>Myers, William K</creator><creator>McAllister, Bryony T</creator><creator>Jones, Saul T. E</creator><creator>Pu, Yong-Jin</creator><creator>Credgington, Dan</creator><creator>Seferos, Dwight S</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DG8</scope><orcidid>https://orcid.org/0000-0003-3841-2417</orcidid><orcidid>https://orcid.org/0000-0001-6007-2530</orcidid><orcidid>https://orcid.org/0000-0003-4673-4512</orcidid><orcidid>https://orcid.org/0000-0001-5935-9112</orcidid><orcidid>https://orcid.org/0000-0001-8742-8058</orcidid><orcidid>https://orcid.org/0000-0001-5940-8631</orcidid></search><sort><creationdate>20200319</creationdate><title>Selenium Substitution Enhances Reverse Intersystem Crossing in a Delayed Fluorescence Emitter</title><author>Drummond, Bluebell H ; Hoover, Gabrielle C ; Gillett, Alexander J ; Aizawa, Naoya ; Myers, William K ; McAllister, Bryony T ; Jones, Saul T. E ; Pu, Yong-Jin ; Credgington, Dan ; Seferos, Dwight S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a388t-409e5799c1f3e1d12fe14c04e890d4b47a53066d4d3b32a7ef5eb8b47a12201d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Drummond, Bluebell H</creatorcontrib><creatorcontrib>Hoover, Gabrielle C</creatorcontrib><creatorcontrib>Gillett, Alexander J</creatorcontrib><creatorcontrib>Aizawa, Naoya</creatorcontrib><creatorcontrib>Myers, William K</creatorcontrib><creatorcontrib>McAllister, Bryony T</creatorcontrib><creatorcontrib>Jones, Saul T. E</creatorcontrib><creatorcontrib>Pu, Yong-Jin</creatorcontrib><creatorcontrib>Credgington, Dan</creatorcontrib><creatorcontrib>Seferos, Dwight S</creatorcontrib><collection>CrossRef</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Linköpings universitet</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Drummond, Bluebell H</au><au>Hoover, Gabrielle C</au><au>Gillett, Alexander J</au><au>Aizawa, Naoya</au><au>Myers, William K</au><au>McAllister, Bryony T</au><au>Jones, Saul T. E</au><au>Pu, Yong-Jin</au><au>Credgington, Dan</au><au>Seferos, Dwight S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selenium Substitution Enhances Reverse Intersystem Crossing in a Delayed Fluorescence Emitter</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2020-03-19</date><risdate>2020</risdate><volume>124</volume><issue>11</issue><spage>6364</spage><epage>6370</epage><pages>6364-6370</pages><issn>1932-7447</issn><issn>1932-7455</issn><eissn>1932-7455</eissn><abstract>Organic emitters exhibiting delayed fluorescence (DF) are promising luminescent materials for next-generation organic light-emitting diodes (OLEDs). Faster intersystem crossing rates and shorter emission lifetimes can be achieved in luminescent molecules through the incorporation of heavy atoms, which enhance spin–orbit coupling and promote intersystem crossing between singlet and triplet states. DF molecules often contain a sulfur atom, and reports of selenium-containing DF OLEDs also exist. However, the literature lacks a direct exploration of the effect of spin–orbit coupling on reverse intersystem crossing in a delayed fluorescence emitter by the substitution of selenium for sulfur. Here we show that substitution of selenium for sulfur in a modified thioxanthenone-triphenylamine analogue increases the rate of forward intersystem crossing by a factor of over 250 and the rate of reverse intersystem by a factor of 22. We attribute the increased rates to enhanced spin–orbit coupling from heavy atom substitution, and computational and electron spin resonance studies support this. This work provides an insight into future molecular design strategies for heavy-atom-containing, DF emitters.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.0c01499</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-3841-2417</orcidid><orcidid>https://orcid.org/0000-0001-6007-2530</orcidid><orcidid>https://orcid.org/0000-0003-4673-4512</orcidid><orcidid>https://orcid.org/0000-0001-5935-9112</orcidid><orcidid>https://orcid.org/0000-0001-8742-8058</orcidid><orcidid>https://orcid.org/0000-0001-5940-8631</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2020-03, Vol.124 (11), p.6364-6370
issn 1932-7447
1932-7455
1932-7455
language eng
recordid cdi_crossref_primary_10_1021_acs_jpcc_0c01499
source ACS Publications
title Selenium Substitution Enhances Reverse Intersystem Crossing in a Delayed Fluorescence Emitter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A52%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selenium%20Substitution%20Enhances%20Reverse%20Intersystem%20Crossing%20in%20a%20Delayed%20Fluorescence%20Emitter&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Drummond,%20Bluebell%20H&rft.date=2020-03-19&rft.volume=124&rft.issue=11&rft.spage=6364&rft.epage=6370&rft.pages=6364-6370&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.0c01499&rft_dat=%3Cacs_swepu%3Ea664483506%3C/acs_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true