Water-Intake and Water-Molecule Paths to the Active Site of Secretory Phospholipase A 2 Studied Using MD Simulations and the Tracking Tool AQUA-DUCT

Secretory phospholipases A (sPLA s) are a subclass of enzymes that catalyze the hydrolysis at the sn-2 position of glycerophospholipids, producing free fatty acids and lysophospholipids. In this study, different phospholipids with structural modifications close to the scissile sn-2 ester bond were s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2020-03, Vol.124 (10), p.1881-1891
Hauptverfasser: Tjørnelund, Helena D, Madsen, Jesper J, Peters, Günther H J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1891
container_issue 10
container_start_page 1881
container_title The journal of physical chemistry. B
container_volume 124
creator Tjørnelund, Helena D
Madsen, Jesper J
Peters, Günther H J
description Secretory phospholipases A (sPLA s) are a subclass of enzymes that catalyze the hydrolysis at the sn-2 position of glycerophospholipids, producing free fatty acids and lysophospholipids. In this study, different phospholipids with structural modifications close to the scissile sn-2 ester bond were studied to determine the effect of the structural changes on the formation of the Michaelis-Menten complex and the water entry/exit pathways using molecular dynamics simulations and the computational tracking tool AQUA-DUCT. Structural modifications include methylation, dehydrogenation, and polarization close to the sn-2 scissile bond. We found that all water molecules reaching the active site of sPLA -IIA pass by the aromatic residues Phe and Tyr and enter the active site through an active-site cleft. The relative amount of water available for the enzymatic reaction of the different phospholipid-sPLA complexes was determined together with the distance between key atoms in the catalytic machinery. The results showed that ( )-unsaturated phospholipid is a good substrate for sPLA -IIA. The computational results are in good agreement with previously reported experimental data on the ability of sPLA -IIA to hydrolyze liposomes made from the different phospholipids, and the results provide new insights into the necessary active-site solvation of the Michaelis-Menten complex and can pave the road for rational design in engineering applications.
doi_str_mv 10.1021/acs.jpcb.9b10837
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcb_9b10837</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>32064878</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1118-af95940788df46fbe463afe10944681f42e2ff99667603f4a70653c0ba5cc9403</originalsourceid><addsrcrecordid>eNo9kM1OwzAMgCMEYmNw54TyAh1J2qbpsdr4mbSJobXiWKVpQrt1S5WkSHsPHpiWDQ6WLdufLX0A3GM0xYjgRy7sdNuKYhoXGDE_ugBjHBLk9RFdnmuKER2BG2u3CJGQMHoNRj5BNGARG4PvD-6k8RYHx3cS8kMJT42VbqToGgnX3FUWOg1dJWEiXP0l4aZ2EmoFN1IY6bQ5wnWlbVvppm657dcggRvXlbUsYWbrwydczXto3zXc1fpgf_8M91LDxW6Yp1o3MHnPEm-ezdJbcKV4Y-XdOU9A9vyUzl695dvLYpYsPYExZh5XcRgHKGKsVAFVhQyoz5XEKA4CyrAKiCRKxTGlEUW-CniEaOgLVPBQiB70JwCd7gqjrTVS5a2p99wcc4zyQXDeC84HwflZcI88nJC2K_ay_Af-jPo_myd4Pw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Water-Intake and Water-Molecule Paths to the Active Site of Secretory Phospholipase A 2 Studied Using MD Simulations and the Tracking Tool AQUA-DUCT</title><source>MEDLINE</source><source>ACS Publications</source><creator>Tjørnelund, Helena D ; Madsen, Jesper J ; Peters, Günther H J</creator><creatorcontrib>Tjørnelund, Helena D ; Madsen, Jesper J ; Peters, Günther H J</creatorcontrib><description>Secretory phospholipases A (sPLA s) are a subclass of enzymes that catalyze the hydrolysis at the sn-2 position of glycerophospholipids, producing free fatty acids and lysophospholipids. In this study, different phospholipids with structural modifications close to the scissile sn-2 ester bond were studied to determine the effect of the structural changes on the formation of the Michaelis-Menten complex and the water entry/exit pathways using molecular dynamics simulations and the computational tracking tool AQUA-DUCT. Structural modifications include methylation, dehydrogenation, and polarization close to the sn-2 scissile bond. We found that all water molecules reaching the active site of sPLA -IIA pass by the aromatic residues Phe and Tyr and enter the active site through an active-site cleft. The relative amount of water available for the enzymatic reaction of the different phospholipid-sPLA complexes was determined together with the distance between key atoms in the catalytic machinery. The results showed that ( )-unsaturated phospholipid is a good substrate for sPLA -IIA. The computational results are in good agreement with previously reported experimental data on the ability of sPLA -IIA to hydrolyze liposomes made from the different phospholipids, and the results provide new insights into the necessary active-site solvation of the Michaelis-Menten complex and can pave the road for rational design in engineering applications.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.9b10837</identifier><identifier>PMID: 32064878</identifier><language>eng</language><publisher>United States</publisher><subject>Catalytic Domain ; Hydrolysis ; Liposomes ; Phospholipases A2, Secretory - metabolism ; Water</subject><ispartof>The journal of physical chemistry. B, 2020-03, Vol.124 (10), p.1881-1891</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1118-af95940788df46fbe463afe10944681f42e2ff99667603f4a70653c0ba5cc9403</citedby><cites>FETCH-LOGICAL-c1118-af95940788df46fbe463afe10944681f42e2ff99667603f4a70653c0ba5cc9403</cites><orcidid>0000-0001-9754-2663 ; 0000-0003-1411-9080 ; 0000-0001-8648-3266</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2764,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32064878$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tjørnelund, Helena D</creatorcontrib><creatorcontrib>Madsen, Jesper J</creatorcontrib><creatorcontrib>Peters, Günther H J</creatorcontrib><title>Water-Intake and Water-Molecule Paths to the Active Site of Secretory Phospholipase A 2 Studied Using MD Simulations and the Tracking Tool AQUA-DUCT</title><title>The journal of physical chemistry. B</title><addtitle>J Phys Chem B</addtitle><description>Secretory phospholipases A (sPLA s) are a subclass of enzymes that catalyze the hydrolysis at the sn-2 position of glycerophospholipids, producing free fatty acids and lysophospholipids. In this study, different phospholipids with structural modifications close to the scissile sn-2 ester bond were studied to determine the effect of the structural changes on the formation of the Michaelis-Menten complex and the water entry/exit pathways using molecular dynamics simulations and the computational tracking tool AQUA-DUCT. Structural modifications include methylation, dehydrogenation, and polarization close to the sn-2 scissile bond. We found that all water molecules reaching the active site of sPLA -IIA pass by the aromatic residues Phe and Tyr and enter the active site through an active-site cleft. The relative amount of water available for the enzymatic reaction of the different phospholipid-sPLA complexes was determined together with the distance between key atoms in the catalytic machinery. The results showed that ( )-unsaturated phospholipid is a good substrate for sPLA -IIA. The computational results are in good agreement with previously reported experimental data on the ability of sPLA -IIA to hydrolyze liposomes made from the different phospholipids, and the results provide new insights into the necessary active-site solvation of the Michaelis-Menten complex and can pave the road for rational design in engineering applications.</description><subject>Catalytic Domain</subject><subject>Hydrolysis</subject><subject>Liposomes</subject><subject>Phospholipases A2, Secretory - metabolism</subject><subject>Water</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kM1OwzAMgCMEYmNw54TyAh1J2qbpsdr4mbSJobXiWKVpQrt1S5WkSHsPHpiWDQ6WLdufLX0A3GM0xYjgRy7sdNuKYhoXGDE_ugBjHBLk9RFdnmuKER2BG2u3CJGQMHoNRj5BNGARG4PvD-6k8RYHx3cS8kMJT42VbqToGgnX3FUWOg1dJWEiXP0l4aZ2EmoFN1IY6bQ5wnWlbVvppm657dcggRvXlbUsYWbrwydczXto3zXc1fpgf_8M91LDxW6Yp1o3MHnPEm-ezdJbcKV4Y-XdOU9A9vyUzl695dvLYpYsPYExZh5XcRgHKGKsVAFVhQyoz5XEKA4CyrAKiCRKxTGlEUW-CniEaOgLVPBQiB70JwCd7gqjrTVS5a2p99wcc4zyQXDeC84HwflZcI88nJC2K_ay_Af-jPo_myd4Pw</recordid><startdate>20200312</startdate><enddate>20200312</enddate><creator>Tjørnelund, Helena D</creator><creator>Madsen, Jesper J</creator><creator>Peters, Günther H J</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9754-2663</orcidid><orcidid>https://orcid.org/0000-0003-1411-9080</orcidid><orcidid>https://orcid.org/0000-0001-8648-3266</orcidid></search><sort><creationdate>20200312</creationdate><title>Water-Intake and Water-Molecule Paths to the Active Site of Secretory Phospholipase A 2 Studied Using MD Simulations and the Tracking Tool AQUA-DUCT</title><author>Tjørnelund, Helena D ; Madsen, Jesper J ; Peters, Günther H J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1118-af95940788df46fbe463afe10944681f42e2ff99667603f4a70653c0ba5cc9403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Catalytic Domain</topic><topic>Hydrolysis</topic><topic>Liposomes</topic><topic>Phospholipases A2, Secretory - metabolism</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tjørnelund, Helena D</creatorcontrib><creatorcontrib>Madsen, Jesper J</creatorcontrib><creatorcontrib>Peters, Günther H J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tjørnelund, Helena D</au><au>Madsen, Jesper J</au><au>Peters, Günther H J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Water-Intake and Water-Molecule Paths to the Active Site of Secretory Phospholipase A 2 Studied Using MD Simulations and the Tracking Tool AQUA-DUCT</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J Phys Chem B</addtitle><date>2020-03-12</date><risdate>2020</risdate><volume>124</volume><issue>10</issue><spage>1881</spage><epage>1891</epage><pages>1881-1891</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>Secretory phospholipases A (sPLA s) are a subclass of enzymes that catalyze the hydrolysis at the sn-2 position of glycerophospholipids, producing free fatty acids and lysophospholipids. In this study, different phospholipids with structural modifications close to the scissile sn-2 ester bond were studied to determine the effect of the structural changes on the formation of the Michaelis-Menten complex and the water entry/exit pathways using molecular dynamics simulations and the computational tracking tool AQUA-DUCT. Structural modifications include methylation, dehydrogenation, and polarization close to the sn-2 scissile bond. We found that all water molecules reaching the active site of sPLA -IIA pass by the aromatic residues Phe and Tyr and enter the active site through an active-site cleft. The relative amount of water available for the enzymatic reaction of the different phospholipid-sPLA complexes was determined together with the distance between key atoms in the catalytic machinery. The results showed that ( )-unsaturated phospholipid is a good substrate for sPLA -IIA. The computational results are in good agreement with previously reported experimental data on the ability of sPLA -IIA to hydrolyze liposomes made from the different phospholipids, and the results provide new insights into the necessary active-site solvation of the Michaelis-Menten complex and can pave the road for rational design in engineering applications.</abstract><cop>United States</cop><pmid>32064878</pmid><doi>10.1021/acs.jpcb.9b10837</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9754-2663</orcidid><orcidid>https://orcid.org/0000-0003-1411-9080</orcidid><orcidid>https://orcid.org/0000-0001-8648-3266</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2020-03, Vol.124 (10), p.1881-1891
issn 1520-6106
1520-5207
language eng
recordid cdi_crossref_primary_10_1021_acs_jpcb_9b10837
source MEDLINE; ACS Publications
subjects Catalytic Domain
Hydrolysis
Liposomes
Phospholipases A2, Secretory - metabolism
Water
title Water-Intake and Water-Molecule Paths to the Active Site of Secretory Phospholipase A 2 Studied Using MD Simulations and the Tracking Tool AQUA-DUCT
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T10%3A16%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Water-Intake%20and%20Water-Molecule%20Paths%20to%20the%20Active%20Site%20of%20Secretory%20Phospholipase%20A%202%20Studied%20Using%20MD%20Simulations%20and%20the%20Tracking%20Tool%20AQUA-DUCT&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Tj%C3%B8rnelund,%20Helena%20D&rft.date=2020-03-12&rft.volume=124&rft.issue=10&rft.spage=1881&rft.epage=1891&rft.pages=1881-1891&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.9b10837&rft_dat=%3Cpubmed_cross%3E32064878%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/32064878&rfr_iscdi=true