Release of Carbohydrate–Metal Adducts from Electrospray Droplets: Insight into Glycan Ionization by Electrospray

Glycans have an immense number of biological activities, necessitating increased efforts to characterize glycan structures. Mass spectrometry has been coupled to electrospray ionization (ESI) to characterize carbohydrates. While the gas-phase structures of glycan– and carbohydrate–metal adducts have...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2020-01, Vol.124 (3), p.479-486
Hauptverfasser: Calixte, Emvia I, Liyanage, O. Tara, Kim, H. Jamie, Ziperman, Emily D, Pearson, Amanda J, Gallagher, Elyssia S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 486
container_issue 3
container_start_page 479
container_title The journal of physical chemistry. B
container_volume 124
creator Calixte, Emvia I
Liyanage, O. Tara
Kim, H. Jamie
Ziperman, Emily D
Pearson, Amanda J
Gallagher, Elyssia S
description Glycans have an immense number of biological activities, necessitating increased efforts to characterize glycan structures. Mass spectrometry has been coupled to electrospray ionization (ESI) to characterize carbohydrates. While the gas-phase structures of glycan– and carbohydrate–metal adducts have been characterized, several questions persist concerning the mechanism of transfer of carbohydrates from ESI droplets into the gas phase. Using various computational methods, including molecular dynamics, steered molecular dynamics, and density functional theory calculations, we present a mechanistic investigation on the evaporation of solvent from nanosized droplets, formation of carbohydrate–metal adducts, and their subsequent release into the gas phase. We relate the computational results to mass spectra of melezitose, a model carbohydrate, and its permethylated derivative. Our results confirm two mechanisms for the release of carbohydrate–ion adducts from solvated droplets. Native (unmodified) carbohydrates are ionized via the charged residue model, while the permethylated derivative is ionized via the ion evaporation model. For both mechanisms, the monomer carbohydrate–metal adduct is the dominant species observed. This work illustrates that the ionization mechanisms are dictated by interactions between the carbohydrate and solvent, and coordination of the carbohydrate with the metal ion. Thus, these results provide insight into the molecular interactions that govern the mechanism of release.
doi_str_mv 10.1021/acs.jpcb.9b10369
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcb_9b10369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d221174394</sourcerecordid><originalsourceid>FETCH-LOGICAL-a336t-c06abef138339d06edce448d9e17a8bf9b70f9108a279979619e011752d481db3</originalsourceid><addsrcrecordid>eNp1kM1OwzAMgCMEYjC4c0J5ADriZksabtMYY9IQEoJzlb-yTl1TJdmhnHgH3pAnoWMDiQOyLPvgz5Y_hC6ADICkcC11GKwarQZCAaFMHKATGKUk6ZIf7nsGhPXQaQgrQtJRmrFj1KOQ8S7oCfJPtrIyWOwKPJFeuWVrvIz28_3jwUZZ4bExGx0DLrxb42lldfQuNF62-Na7prIx3OB5HcrXZcRlHR2eVa2WNZ67unyTsXQ1Vu0f8AwdFbIK9nxf--jlbvo8uU8Wj7P5ZLxIJKUsJpowqWwBNKNUGMKs0XY4zIywwGWmCqE4KQSQTKZcCC4YCEsA-Cg1wwyMon1Ednt1dzh4W-SNL9fStzmQfKsv7_TlW335Xl-HXO6QZqPW1vwCP766gavdwDfqNr7uPvh_3xcXc37G</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Release of Carbohydrate–Metal Adducts from Electrospray Droplets: Insight into Glycan Ionization by Electrospray</title><source>MEDLINE</source><source>ACS Publications</source><creator>Calixte, Emvia I ; Liyanage, O. Tara ; Kim, H. Jamie ; Ziperman, Emily D ; Pearson, Amanda J ; Gallagher, Elyssia S</creator><creatorcontrib>Calixte, Emvia I ; Liyanage, O. Tara ; Kim, H. Jamie ; Ziperman, Emily D ; Pearson, Amanda J ; Gallagher, Elyssia S</creatorcontrib><description>Glycans have an immense number of biological activities, necessitating increased efforts to characterize glycan structures. Mass spectrometry has been coupled to electrospray ionization (ESI) to characterize carbohydrates. While the gas-phase structures of glycan– and carbohydrate–metal adducts have been characterized, several questions persist concerning the mechanism of transfer of carbohydrates from ESI droplets into the gas phase. Using various computational methods, including molecular dynamics, steered molecular dynamics, and density functional theory calculations, we present a mechanistic investigation on the evaporation of solvent from nanosized droplets, formation of carbohydrate–metal adducts, and their subsequent release into the gas phase. We relate the computational results to mass spectra of melezitose, a model carbohydrate, and its permethylated derivative. Our results confirm two mechanisms for the release of carbohydrate–ion adducts from solvated droplets. Native (unmodified) carbohydrates are ionized via the charged residue model, while the permethylated derivative is ionized via the ion evaporation model. For both mechanisms, the monomer carbohydrate–metal adduct is the dominant species observed. This work illustrates that the ionization mechanisms are dictated by interactions between the carbohydrate and solvent, and coordination of the carbohydrate with the metal ion. Thus, these results provide insight into the molecular interactions that govern the mechanism of release.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.9b10369</identifier><identifier>PMID: 31878783</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Carbohydrate Conformation ; Density Functional Theory ; Gases - chemistry ; Models, Chemical ; Molecular Dynamics Simulation ; Nanostructures - chemistry ; Sodium - chemistry ; Spectrometry, Mass, Electrospray Ionization ; Trisaccharides - chemistry ; Water - chemistry</subject><ispartof>The journal of physical chemistry. B, 2020-01, Vol.124 (3), p.479-486</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a336t-c06abef138339d06edce448d9e17a8bf9b70f9108a279979619e011752d481db3</citedby><cites>FETCH-LOGICAL-a336t-c06abef138339d06edce448d9e17a8bf9b70f9108a279979619e011752d481db3</cites><orcidid>0000-0002-0343-7406 ; 0000-0002-5411-7285 ; 0000-0002-1121-2485</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcb.9b10369$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcb.9b10369$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27074,27922,27923,56736,56786</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31878783$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Calixte, Emvia I</creatorcontrib><creatorcontrib>Liyanage, O. Tara</creatorcontrib><creatorcontrib>Kim, H. Jamie</creatorcontrib><creatorcontrib>Ziperman, Emily D</creatorcontrib><creatorcontrib>Pearson, Amanda J</creatorcontrib><creatorcontrib>Gallagher, Elyssia S</creatorcontrib><title>Release of Carbohydrate–Metal Adducts from Electrospray Droplets: Insight into Glycan Ionization by Electrospray</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>Glycans have an immense number of biological activities, necessitating increased efforts to characterize glycan structures. Mass spectrometry has been coupled to electrospray ionization (ESI) to characterize carbohydrates. While the gas-phase structures of glycan– and carbohydrate–metal adducts have been characterized, several questions persist concerning the mechanism of transfer of carbohydrates from ESI droplets into the gas phase. Using various computational methods, including molecular dynamics, steered molecular dynamics, and density functional theory calculations, we present a mechanistic investigation on the evaporation of solvent from nanosized droplets, formation of carbohydrate–metal adducts, and their subsequent release into the gas phase. We relate the computational results to mass spectra of melezitose, a model carbohydrate, and its permethylated derivative. Our results confirm two mechanisms for the release of carbohydrate–ion adducts from solvated droplets. Native (unmodified) carbohydrates are ionized via the charged residue model, while the permethylated derivative is ionized via the ion evaporation model. For both mechanisms, the monomer carbohydrate–metal adduct is the dominant species observed. This work illustrates that the ionization mechanisms are dictated by interactions between the carbohydrate and solvent, and coordination of the carbohydrate with the metal ion. Thus, these results provide insight into the molecular interactions that govern the mechanism of release.</description><subject>Carbohydrate Conformation</subject><subject>Density Functional Theory</subject><subject>Gases - chemistry</subject><subject>Models, Chemical</subject><subject>Molecular Dynamics Simulation</subject><subject>Nanostructures - chemistry</subject><subject>Sodium - chemistry</subject><subject>Spectrometry, Mass, Electrospray Ionization</subject><subject>Trisaccharides - chemistry</subject><subject>Water - chemistry</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kM1OwzAMgCMEYjC4c0J5ADriZksabtMYY9IQEoJzlb-yTl1TJdmhnHgH3pAnoWMDiQOyLPvgz5Y_hC6ADICkcC11GKwarQZCAaFMHKATGKUk6ZIf7nsGhPXQaQgrQtJRmrFj1KOQ8S7oCfJPtrIyWOwKPJFeuWVrvIz28_3jwUZZ4bExGx0DLrxb42lldfQuNF62-Na7prIx3OB5HcrXZcRlHR2eVa2WNZ67unyTsXQ1Vu0f8AwdFbIK9nxf--jlbvo8uU8Wj7P5ZLxIJKUsJpowqWwBNKNUGMKs0XY4zIywwGWmCqE4KQSQTKZcCC4YCEsA-Cg1wwyMon1Ednt1dzh4W-SNL9fStzmQfKsv7_TlW335Xl-HXO6QZqPW1vwCP766gavdwDfqNr7uPvh_3xcXc37G</recordid><startdate>20200123</startdate><enddate>20200123</enddate><creator>Calixte, Emvia I</creator><creator>Liyanage, O. Tara</creator><creator>Kim, H. Jamie</creator><creator>Ziperman, Emily D</creator><creator>Pearson, Amanda J</creator><creator>Gallagher, Elyssia S</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0343-7406</orcidid><orcidid>https://orcid.org/0000-0002-5411-7285</orcidid><orcidid>https://orcid.org/0000-0002-1121-2485</orcidid></search><sort><creationdate>20200123</creationdate><title>Release of Carbohydrate–Metal Adducts from Electrospray Droplets: Insight into Glycan Ionization by Electrospray</title><author>Calixte, Emvia I ; Liyanage, O. Tara ; Kim, H. Jamie ; Ziperman, Emily D ; Pearson, Amanda J ; Gallagher, Elyssia S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a336t-c06abef138339d06edce448d9e17a8bf9b70f9108a279979619e011752d481db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Carbohydrate Conformation</topic><topic>Density Functional Theory</topic><topic>Gases - chemistry</topic><topic>Models, Chemical</topic><topic>Molecular Dynamics Simulation</topic><topic>Nanostructures - chemistry</topic><topic>Sodium - chemistry</topic><topic>Spectrometry, Mass, Electrospray Ionization</topic><topic>Trisaccharides - chemistry</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calixte, Emvia I</creatorcontrib><creatorcontrib>Liyanage, O. Tara</creatorcontrib><creatorcontrib>Kim, H. Jamie</creatorcontrib><creatorcontrib>Ziperman, Emily D</creatorcontrib><creatorcontrib>Pearson, Amanda J</creatorcontrib><creatorcontrib>Gallagher, Elyssia S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calixte, Emvia I</au><au>Liyanage, O. Tara</au><au>Kim, H. Jamie</au><au>Ziperman, Emily D</au><au>Pearson, Amanda J</au><au>Gallagher, Elyssia S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Release of Carbohydrate–Metal Adducts from Electrospray Droplets: Insight into Glycan Ionization by Electrospray</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2020-01-23</date><risdate>2020</risdate><volume>124</volume><issue>3</issue><spage>479</spage><epage>486</epage><pages>479-486</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>Glycans have an immense number of biological activities, necessitating increased efforts to characterize glycan structures. Mass spectrometry has been coupled to electrospray ionization (ESI) to characterize carbohydrates. While the gas-phase structures of glycan– and carbohydrate–metal adducts have been characterized, several questions persist concerning the mechanism of transfer of carbohydrates from ESI droplets into the gas phase. Using various computational methods, including molecular dynamics, steered molecular dynamics, and density functional theory calculations, we present a mechanistic investigation on the evaporation of solvent from nanosized droplets, formation of carbohydrate–metal adducts, and their subsequent release into the gas phase. We relate the computational results to mass spectra of melezitose, a model carbohydrate, and its permethylated derivative. Our results confirm two mechanisms for the release of carbohydrate–ion adducts from solvated droplets. Native (unmodified) carbohydrates are ionized via the charged residue model, while the permethylated derivative is ionized via the ion evaporation model. For both mechanisms, the monomer carbohydrate–metal adduct is the dominant species observed. This work illustrates that the ionization mechanisms are dictated by interactions between the carbohydrate and solvent, and coordination of the carbohydrate with the metal ion. Thus, these results provide insight into the molecular interactions that govern the mechanism of release.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31878783</pmid><doi>10.1021/acs.jpcb.9b10369</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0343-7406</orcidid><orcidid>https://orcid.org/0000-0002-5411-7285</orcidid><orcidid>https://orcid.org/0000-0002-1121-2485</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2020-01, Vol.124 (3), p.479-486
issn 1520-6106
1520-5207
language eng
recordid cdi_crossref_primary_10_1021_acs_jpcb_9b10369
source MEDLINE; ACS Publications
subjects Carbohydrate Conformation
Density Functional Theory
Gases - chemistry
Models, Chemical
Molecular Dynamics Simulation
Nanostructures - chemistry
Sodium - chemistry
Spectrometry, Mass, Electrospray Ionization
Trisaccharides - chemistry
Water - chemistry
title Release of Carbohydrate–Metal Adducts from Electrospray Droplets: Insight into Glycan Ionization by Electrospray
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T15%3A40%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Release%20of%20Carbohydrate%E2%80%93Metal%20Adducts%20from%20Electrospray%20Droplets:%20Insight%20into%20Glycan%20Ionization%20by%20Electrospray&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Calixte,%20Emvia%20I&rft.date=2020-01-23&rft.volume=124&rft.issue=3&rft.spage=479&rft.epage=486&rft.pages=479-486&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.9b10369&rft_dat=%3Cacs_cross%3Ed221174394%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/31878783&rfr_iscdi=true