Mechanism of Side Chain-Controlled Proton Conductivity in Bioinspired Peptidic Nanostructures

Bioinspired peptide assemblies are promising candidates for use as proton-conducting materials in electrochemical devices and other advanced technologies. Progress toward applications requires establishing foundational structure–function relationships for transport in these materials. This experimen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2021-11, Vol.125 (46), p.12741-12752
Hauptverfasser: Roy, Subhasish, Zheng, Lianjun, Silberbush, Ohad, Engel, Maor, Atsmon-Raz, Yoav, Miller, Yifat, Migliore, Agostino, Beratan, David N, Ashkenasy, Nurit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12752
container_issue 46
container_start_page 12741
container_title The journal of physical chemistry. B
container_volume 125
creator Roy, Subhasish
Zheng, Lianjun
Silberbush, Ohad
Engel, Maor
Atsmon-Raz, Yoav
Miller, Yifat
Migliore, Agostino
Beratan, David N
Ashkenasy, Nurit
description Bioinspired peptide assemblies are promising candidates for use as proton-conducting materials in electrochemical devices and other advanced technologies. Progress toward applications requires establishing foundational structure–function relationships for transport in these materials. This experimental–theoretical study sheds light on how the molecular structure and proton conduction are linked in three synthetic cyclic peptide nanotube assemblies that comprise the three canonical basic amino acids (lysine, arginine, and histidine). Experiments find an order of magnitude higher proton conductivity for lysine-containing peptide assemblies compared to histidine and arginine containing assemblies. The simulations indicate that, upon peptide assembly, the basic amino acid side chains are close enough to enable direct proton transfer. The proton transfer kinetics is determined in the simulations to be governed by the structure and flexibility of the side chains. Together, experiments and theory indicate that the proton mobility is the main determinant of proton conductivity, critical for the performance of peptide-based devices.
doi_str_mv 10.1021/acs.jpcb.1c08857
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcb_1c08857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a527270455</sourcerecordid><originalsourceid>FETCH-LOGICAL-a336t-3706fcc277288f41239100ba8a261ac6b6aa3ce13f2e240f67b373f43649ecec3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMotlbvniQ_wK352CbpURe_oH6AepQlm01oSjdZkqzQf29qqzcPwwzD8w7MA8A5RlOMCL6SKk5XvWqmWCEhZvwAjPGMoCIXP9zPDCM2AicxrhAiMyLYMRjRkguE53wMPp-0WkpnYwe9gW-21bBaSuuKyrsU_HqtW_gafPIO5k07qGS_bNpA6-CN9dbF3oYtovtkW6vgs3Q-ppC5Ieh4Co6MXEd9tu8T8HF3-149FIuX-8fqelFISlkqKEfMKEU4J0KYEhM6xwg1UkjCsFSsYVJSpTE1RJMSGcYbyqkpKSvnWmlFJwDt7qrgYwza1H2wnQybGqN6a6rOpuqtqXpvKkcudpF-aDrd_gV-1WTgcgf8RP0QXP7g_3vfMER2Iw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mechanism of Side Chain-Controlled Proton Conductivity in Bioinspired Peptidic Nanostructures</title><source>MEDLINE</source><source>ACS Publications</source><creator>Roy, Subhasish ; Zheng, Lianjun ; Silberbush, Ohad ; Engel, Maor ; Atsmon-Raz, Yoav ; Miller, Yifat ; Migliore, Agostino ; Beratan, David N ; Ashkenasy, Nurit</creator><creatorcontrib>Roy, Subhasish ; Zheng, Lianjun ; Silberbush, Ohad ; Engel, Maor ; Atsmon-Raz, Yoav ; Miller, Yifat ; Migliore, Agostino ; Beratan, David N ; Ashkenasy, Nurit</creatorcontrib><description>Bioinspired peptide assemblies are promising candidates for use as proton-conducting materials in electrochemical devices and other advanced technologies. Progress toward applications requires establishing foundational structure–function relationships for transport in these materials. This experimental–theoretical study sheds light on how the molecular structure and proton conduction are linked in three synthetic cyclic peptide nanotube assemblies that comprise the three canonical basic amino acids (lysine, arginine, and histidine). Experiments find an order of magnitude higher proton conductivity for lysine-containing peptide assemblies compared to histidine and arginine containing assemblies. The simulations indicate that, upon peptide assembly, the basic amino acid side chains are close enough to enable direct proton transfer. The proton transfer kinetics is determined in the simulations to be governed by the structure and flexibility of the side chains. Together, experiments and theory indicate that the proton mobility is the main determinant of proton conductivity, critical for the performance of peptide-based devices.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.1c08857</identifier><identifier>PMID: 34780197</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>B: Biomaterials and Membranes ; Electric Conductivity ; Nanostructures ; Nanotubes, Peptide ; Peptides ; Protons</subject><ispartof>The journal of physical chemistry. B, 2021-11, Vol.125 (46), p.12741-12752</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a336t-3706fcc277288f41239100ba8a261ac6b6aa3ce13f2e240f67b373f43649ecec3</citedby><cites>FETCH-LOGICAL-a336t-3706fcc277288f41239100ba8a261ac6b6aa3ce13f2e240f67b373f43649ecec3</cites><orcidid>0000-0002-1163-9745 ; 0000-0003-4758-8676 ; 0000-0003-2880-9293 ; 0000-0001-7780-2296 ; 0000-0001-6476-9845</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcb.1c08857$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcb.1c08857$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34780197$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Roy, Subhasish</creatorcontrib><creatorcontrib>Zheng, Lianjun</creatorcontrib><creatorcontrib>Silberbush, Ohad</creatorcontrib><creatorcontrib>Engel, Maor</creatorcontrib><creatorcontrib>Atsmon-Raz, Yoav</creatorcontrib><creatorcontrib>Miller, Yifat</creatorcontrib><creatorcontrib>Migliore, Agostino</creatorcontrib><creatorcontrib>Beratan, David N</creatorcontrib><creatorcontrib>Ashkenasy, Nurit</creatorcontrib><title>Mechanism of Side Chain-Controlled Proton Conductivity in Bioinspired Peptidic Nanostructures</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>Bioinspired peptide assemblies are promising candidates for use as proton-conducting materials in electrochemical devices and other advanced technologies. Progress toward applications requires establishing foundational structure–function relationships for transport in these materials. This experimental–theoretical study sheds light on how the molecular structure and proton conduction are linked in three synthetic cyclic peptide nanotube assemblies that comprise the three canonical basic amino acids (lysine, arginine, and histidine). Experiments find an order of magnitude higher proton conductivity for lysine-containing peptide assemblies compared to histidine and arginine containing assemblies. The simulations indicate that, upon peptide assembly, the basic amino acid side chains are close enough to enable direct proton transfer. The proton transfer kinetics is determined in the simulations to be governed by the structure and flexibility of the side chains. Together, experiments and theory indicate that the proton mobility is the main determinant of proton conductivity, critical for the performance of peptide-based devices.</description><subject>B: Biomaterials and Membranes</subject><subject>Electric Conductivity</subject><subject>Nanostructures</subject><subject>Nanotubes, Peptide</subject><subject>Peptides</subject><subject>Protons</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kE1LAzEQhoMotlbvniQ_wK352CbpURe_oH6AepQlm01oSjdZkqzQf29qqzcPwwzD8w7MA8A5RlOMCL6SKk5XvWqmWCEhZvwAjPGMoCIXP9zPDCM2AicxrhAiMyLYMRjRkguE53wMPp-0WkpnYwe9gW-21bBaSuuKyrsU_HqtW_gafPIO5k07qGS_bNpA6-CN9dbF3oYtovtkW6vgs3Q-ppC5Ieh4Co6MXEd9tu8T8HF3-149FIuX-8fqelFISlkqKEfMKEU4J0KYEhM6xwg1UkjCsFSsYVJSpTE1RJMSGcYbyqkpKSvnWmlFJwDt7qrgYwza1H2wnQybGqN6a6rOpuqtqXpvKkcudpF-aDrd_gV-1WTgcgf8RP0QXP7g_3vfMER2Iw</recordid><startdate>20211125</startdate><enddate>20211125</enddate><creator>Roy, Subhasish</creator><creator>Zheng, Lianjun</creator><creator>Silberbush, Ohad</creator><creator>Engel, Maor</creator><creator>Atsmon-Raz, Yoav</creator><creator>Miller, Yifat</creator><creator>Migliore, Agostino</creator><creator>Beratan, David N</creator><creator>Ashkenasy, Nurit</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1163-9745</orcidid><orcidid>https://orcid.org/0000-0003-4758-8676</orcidid><orcidid>https://orcid.org/0000-0003-2880-9293</orcidid><orcidid>https://orcid.org/0000-0001-7780-2296</orcidid><orcidid>https://orcid.org/0000-0001-6476-9845</orcidid></search><sort><creationdate>20211125</creationdate><title>Mechanism of Side Chain-Controlled Proton Conductivity in Bioinspired Peptidic Nanostructures</title><author>Roy, Subhasish ; Zheng, Lianjun ; Silberbush, Ohad ; Engel, Maor ; Atsmon-Raz, Yoav ; Miller, Yifat ; Migliore, Agostino ; Beratan, David N ; Ashkenasy, Nurit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a336t-3706fcc277288f41239100ba8a261ac6b6aa3ce13f2e240f67b373f43649ecec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>B: Biomaterials and Membranes</topic><topic>Electric Conductivity</topic><topic>Nanostructures</topic><topic>Nanotubes, Peptide</topic><topic>Peptides</topic><topic>Protons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roy, Subhasish</creatorcontrib><creatorcontrib>Zheng, Lianjun</creatorcontrib><creatorcontrib>Silberbush, Ohad</creatorcontrib><creatorcontrib>Engel, Maor</creatorcontrib><creatorcontrib>Atsmon-Raz, Yoav</creatorcontrib><creatorcontrib>Miller, Yifat</creatorcontrib><creatorcontrib>Migliore, Agostino</creatorcontrib><creatorcontrib>Beratan, David N</creatorcontrib><creatorcontrib>Ashkenasy, Nurit</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roy, Subhasish</au><au>Zheng, Lianjun</au><au>Silberbush, Ohad</au><au>Engel, Maor</au><au>Atsmon-Raz, Yoav</au><au>Miller, Yifat</au><au>Migliore, Agostino</au><au>Beratan, David N</au><au>Ashkenasy, Nurit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism of Side Chain-Controlled Proton Conductivity in Bioinspired Peptidic Nanostructures</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2021-11-25</date><risdate>2021</risdate><volume>125</volume><issue>46</issue><spage>12741</spage><epage>12752</epage><pages>12741-12752</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>Bioinspired peptide assemblies are promising candidates for use as proton-conducting materials in electrochemical devices and other advanced technologies. Progress toward applications requires establishing foundational structure–function relationships for transport in these materials. This experimental–theoretical study sheds light on how the molecular structure and proton conduction are linked in three synthetic cyclic peptide nanotube assemblies that comprise the three canonical basic amino acids (lysine, arginine, and histidine). Experiments find an order of magnitude higher proton conductivity for lysine-containing peptide assemblies compared to histidine and arginine containing assemblies. The simulations indicate that, upon peptide assembly, the basic amino acid side chains are close enough to enable direct proton transfer. The proton transfer kinetics is determined in the simulations to be governed by the structure and flexibility of the side chains. Together, experiments and theory indicate that the proton mobility is the main determinant of proton conductivity, critical for the performance of peptide-based devices.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>34780197</pmid><doi>10.1021/acs.jpcb.1c08857</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1163-9745</orcidid><orcidid>https://orcid.org/0000-0003-4758-8676</orcidid><orcidid>https://orcid.org/0000-0003-2880-9293</orcidid><orcidid>https://orcid.org/0000-0001-7780-2296</orcidid><orcidid>https://orcid.org/0000-0001-6476-9845</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2021-11, Vol.125 (46), p.12741-12752
issn 1520-6106
1520-5207
language eng
recordid cdi_crossref_primary_10_1021_acs_jpcb_1c08857
source MEDLINE; ACS Publications
subjects B: Biomaterials and Membranes
Electric Conductivity
Nanostructures
Nanotubes, Peptide
Peptides
Protons
title Mechanism of Side Chain-Controlled Proton Conductivity in Bioinspired Peptidic Nanostructures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A29%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20of%20Side%20Chain-Controlled%20Proton%20Conductivity%20in%20Bioinspired%20Peptidic%20Nanostructures&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Roy,%20Subhasish&rft.date=2021-11-25&rft.volume=125&rft.issue=46&rft.spage=12741&rft.epage=12752&rft.pages=12741-12752&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.1c08857&rft_dat=%3Cacs_cross%3Ea527270455%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/34780197&rfr_iscdi=true