Mechanism of Side Chain-Controlled Proton Conductivity in Bioinspired Peptidic Nanostructures
Bioinspired peptide assemblies are promising candidates for use as proton-conducting materials in electrochemical devices and other advanced technologies. Progress toward applications requires establishing foundational structure–function relationships for transport in these materials. This experimen...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. B 2021-11, Vol.125 (46), p.12741-12752 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12752 |
---|---|
container_issue | 46 |
container_start_page | 12741 |
container_title | The journal of physical chemistry. B |
container_volume | 125 |
creator | Roy, Subhasish Zheng, Lianjun Silberbush, Ohad Engel, Maor Atsmon-Raz, Yoav Miller, Yifat Migliore, Agostino Beratan, David N Ashkenasy, Nurit |
description | Bioinspired peptide assemblies are promising candidates for use as proton-conducting materials in electrochemical devices and other advanced technologies. Progress toward applications requires establishing foundational structure–function relationships for transport in these materials. This experimental–theoretical study sheds light on how the molecular structure and proton conduction are linked in three synthetic cyclic peptide nanotube assemblies that comprise the three canonical basic amino acids (lysine, arginine, and histidine). Experiments find an order of magnitude higher proton conductivity for lysine-containing peptide assemblies compared to histidine and arginine containing assemblies. The simulations indicate that, upon peptide assembly, the basic amino acid side chains are close enough to enable direct proton transfer. The proton transfer kinetics is determined in the simulations to be governed by the structure and flexibility of the side chains. Together, experiments and theory indicate that the proton mobility is the main determinant of proton conductivity, critical for the performance of peptide-based devices. |
doi_str_mv | 10.1021/acs.jpcb.1c08857 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpcb_1c08857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a527270455</sourcerecordid><originalsourceid>FETCH-LOGICAL-a336t-3706fcc277288f41239100ba8a261ac6b6aa3ce13f2e240f67b373f43649ecec3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMotlbvniQ_wK352CbpURe_oH6AepQlm01oSjdZkqzQf29qqzcPwwzD8w7MA8A5RlOMCL6SKk5XvWqmWCEhZvwAjPGMoCIXP9zPDCM2AicxrhAiMyLYMRjRkguE53wMPp-0WkpnYwe9gW-21bBaSuuKyrsU_HqtW_gafPIO5k07qGS_bNpA6-CN9dbF3oYtovtkW6vgs3Q-ppC5Ieh4Co6MXEd9tu8T8HF3-149FIuX-8fqelFISlkqKEfMKEU4J0KYEhM6xwg1UkjCsFSsYVJSpTE1RJMSGcYbyqkpKSvnWmlFJwDt7qrgYwza1H2wnQybGqN6a6rOpuqtqXpvKkcudpF-aDrd_gV-1WTgcgf8RP0QXP7g_3vfMER2Iw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mechanism of Side Chain-Controlled Proton Conductivity in Bioinspired Peptidic Nanostructures</title><source>MEDLINE</source><source>ACS Publications</source><creator>Roy, Subhasish ; Zheng, Lianjun ; Silberbush, Ohad ; Engel, Maor ; Atsmon-Raz, Yoav ; Miller, Yifat ; Migliore, Agostino ; Beratan, David N ; Ashkenasy, Nurit</creator><creatorcontrib>Roy, Subhasish ; Zheng, Lianjun ; Silberbush, Ohad ; Engel, Maor ; Atsmon-Raz, Yoav ; Miller, Yifat ; Migliore, Agostino ; Beratan, David N ; Ashkenasy, Nurit</creatorcontrib><description>Bioinspired peptide assemblies are promising candidates for use as proton-conducting materials in electrochemical devices and other advanced technologies. Progress toward applications requires establishing foundational structure–function relationships for transport in these materials. This experimental–theoretical study sheds light on how the molecular structure and proton conduction are linked in three synthetic cyclic peptide nanotube assemblies that comprise the three canonical basic amino acids (lysine, arginine, and histidine). Experiments find an order of magnitude higher proton conductivity for lysine-containing peptide assemblies compared to histidine and arginine containing assemblies. The simulations indicate that, upon peptide assembly, the basic amino acid side chains are close enough to enable direct proton transfer. The proton transfer kinetics is determined in the simulations to be governed by the structure and flexibility of the side chains. Together, experiments and theory indicate that the proton mobility is the main determinant of proton conductivity, critical for the performance of peptide-based devices.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.1c08857</identifier><identifier>PMID: 34780197</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>B: Biomaterials and Membranes ; Electric Conductivity ; Nanostructures ; Nanotubes, Peptide ; Peptides ; Protons</subject><ispartof>The journal of physical chemistry. B, 2021-11, Vol.125 (46), p.12741-12752</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a336t-3706fcc277288f41239100ba8a261ac6b6aa3ce13f2e240f67b373f43649ecec3</citedby><cites>FETCH-LOGICAL-a336t-3706fcc277288f41239100ba8a261ac6b6aa3ce13f2e240f67b373f43649ecec3</cites><orcidid>0000-0002-1163-9745 ; 0000-0003-4758-8676 ; 0000-0003-2880-9293 ; 0000-0001-7780-2296 ; 0000-0001-6476-9845</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcb.1c08857$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcb.1c08857$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34780197$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Roy, Subhasish</creatorcontrib><creatorcontrib>Zheng, Lianjun</creatorcontrib><creatorcontrib>Silberbush, Ohad</creatorcontrib><creatorcontrib>Engel, Maor</creatorcontrib><creatorcontrib>Atsmon-Raz, Yoav</creatorcontrib><creatorcontrib>Miller, Yifat</creatorcontrib><creatorcontrib>Migliore, Agostino</creatorcontrib><creatorcontrib>Beratan, David N</creatorcontrib><creatorcontrib>Ashkenasy, Nurit</creatorcontrib><title>Mechanism of Side Chain-Controlled Proton Conductivity in Bioinspired Peptidic Nanostructures</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>Bioinspired peptide assemblies are promising candidates for use as proton-conducting materials in electrochemical devices and other advanced technologies. Progress toward applications requires establishing foundational structure–function relationships for transport in these materials. This experimental–theoretical study sheds light on how the molecular structure and proton conduction are linked in three synthetic cyclic peptide nanotube assemblies that comprise the three canonical basic amino acids (lysine, arginine, and histidine). Experiments find an order of magnitude higher proton conductivity for lysine-containing peptide assemblies compared to histidine and arginine containing assemblies. The simulations indicate that, upon peptide assembly, the basic amino acid side chains are close enough to enable direct proton transfer. The proton transfer kinetics is determined in the simulations to be governed by the structure and flexibility of the side chains. Together, experiments and theory indicate that the proton mobility is the main determinant of proton conductivity, critical for the performance of peptide-based devices.</description><subject>B: Biomaterials and Membranes</subject><subject>Electric Conductivity</subject><subject>Nanostructures</subject><subject>Nanotubes, Peptide</subject><subject>Peptides</subject><subject>Protons</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kE1LAzEQhoMotlbvniQ_wK352CbpURe_oH6AepQlm01oSjdZkqzQf29qqzcPwwzD8w7MA8A5RlOMCL6SKk5XvWqmWCEhZvwAjPGMoCIXP9zPDCM2AicxrhAiMyLYMRjRkguE53wMPp-0WkpnYwe9gW-21bBaSuuKyrsU_HqtW_gafPIO5k07qGS_bNpA6-CN9dbF3oYtovtkW6vgs3Q-ppC5Ieh4Co6MXEd9tu8T8HF3-149FIuX-8fqelFISlkqKEfMKEU4J0KYEhM6xwg1UkjCsFSsYVJSpTE1RJMSGcYbyqkpKSvnWmlFJwDt7qrgYwza1H2wnQybGqN6a6rOpuqtqXpvKkcudpF-aDrd_gV-1WTgcgf8RP0QXP7g_3vfMER2Iw</recordid><startdate>20211125</startdate><enddate>20211125</enddate><creator>Roy, Subhasish</creator><creator>Zheng, Lianjun</creator><creator>Silberbush, Ohad</creator><creator>Engel, Maor</creator><creator>Atsmon-Raz, Yoav</creator><creator>Miller, Yifat</creator><creator>Migliore, Agostino</creator><creator>Beratan, David N</creator><creator>Ashkenasy, Nurit</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1163-9745</orcidid><orcidid>https://orcid.org/0000-0003-4758-8676</orcidid><orcidid>https://orcid.org/0000-0003-2880-9293</orcidid><orcidid>https://orcid.org/0000-0001-7780-2296</orcidid><orcidid>https://orcid.org/0000-0001-6476-9845</orcidid></search><sort><creationdate>20211125</creationdate><title>Mechanism of Side Chain-Controlled Proton Conductivity in Bioinspired Peptidic Nanostructures</title><author>Roy, Subhasish ; Zheng, Lianjun ; Silberbush, Ohad ; Engel, Maor ; Atsmon-Raz, Yoav ; Miller, Yifat ; Migliore, Agostino ; Beratan, David N ; Ashkenasy, Nurit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a336t-3706fcc277288f41239100ba8a261ac6b6aa3ce13f2e240f67b373f43649ecec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>B: Biomaterials and Membranes</topic><topic>Electric Conductivity</topic><topic>Nanostructures</topic><topic>Nanotubes, Peptide</topic><topic>Peptides</topic><topic>Protons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roy, Subhasish</creatorcontrib><creatorcontrib>Zheng, Lianjun</creatorcontrib><creatorcontrib>Silberbush, Ohad</creatorcontrib><creatorcontrib>Engel, Maor</creatorcontrib><creatorcontrib>Atsmon-Raz, Yoav</creatorcontrib><creatorcontrib>Miller, Yifat</creatorcontrib><creatorcontrib>Migliore, Agostino</creatorcontrib><creatorcontrib>Beratan, David N</creatorcontrib><creatorcontrib>Ashkenasy, Nurit</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roy, Subhasish</au><au>Zheng, Lianjun</au><au>Silberbush, Ohad</au><au>Engel, Maor</au><au>Atsmon-Raz, Yoav</au><au>Miller, Yifat</au><au>Migliore, Agostino</au><au>Beratan, David N</au><au>Ashkenasy, Nurit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism of Side Chain-Controlled Proton Conductivity in Bioinspired Peptidic Nanostructures</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2021-11-25</date><risdate>2021</risdate><volume>125</volume><issue>46</issue><spage>12741</spage><epage>12752</epage><pages>12741-12752</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>Bioinspired peptide assemblies are promising candidates for use as proton-conducting materials in electrochemical devices and other advanced technologies. Progress toward applications requires establishing foundational structure–function relationships for transport in these materials. This experimental–theoretical study sheds light on how the molecular structure and proton conduction are linked in three synthetic cyclic peptide nanotube assemblies that comprise the three canonical basic amino acids (lysine, arginine, and histidine). Experiments find an order of magnitude higher proton conductivity for lysine-containing peptide assemblies compared to histidine and arginine containing assemblies. The simulations indicate that, upon peptide assembly, the basic amino acid side chains are close enough to enable direct proton transfer. The proton transfer kinetics is determined in the simulations to be governed by the structure and flexibility of the side chains. Together, experiments and theory indicate that the proton mobility is the main determinant of proton conductivity, critical for the performance of peptide-based devices.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>34780197</pmid><doi>10.1021/acs.jpcb.1c08857</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1163-9745</orcidid><orcidid>https://orcid.org/0000-0003-4758-8676</orcidid><orcidid>https://orcid.org/0000-0003-2880-9293</orcidid><orcidid>https://orcid.org/0000-0001-7780-2296</orcidid><orcidid>https://orcid.org/0000-0001-6476-9845</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1520-6106 |
ispartof | The journal of physical chemistry. B, 2021-11, Vol.125 (46), p.12741-12752 |
issn | 1520-6106 1520-5207 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acs_jpcb_1c08857 |
source | MEDLINE; ACS Publications |
subjects | B: Biomaterials and Membranes Electric Conductivity Nanostructures Nanotubes, Peptide Peptides Protons |
title | Mechanism of Side Chain-Controlled Proton Conductivity in Bioinspired Peptidic Nanostructures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A29%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20of%20Side%20Chain-Controlled%20Proton%20Conductivity%20in%20Bioinspired%20Peptidic%20Nanostructures&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Roy,%20Subhasish&rft.date=2021-11-25&rft.volume=125&rft.issue=46&rft.spage=12741&rft.epage=12752&rft.pages=12741-12752&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.1c08857&rft_dat=%3Cacs_cross%3Ea527270455%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/34780197&rfr_iscdi=true |