Conformer-Dependent Chemistry: Experimental Product Branching of the Vinyl Alcohol + OH + O 2 Reaction

The concentration of formic acid in Earth's troposphere is underestimated by detailed chemical models compared to field observations. Phototautomerization of acetaldehyde to its less stable tautomer vinyl alcohol, followed by the OH-initiated oxidation of vinyl alcohol, has been proposed as a m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2023-04, Vol.127 (14), p.3221-3230
Hauptverfasser: Rösch, Daniel, Jones, Gregory H, Almeida, Raybel, Caravan, Rebecca L, Hui, Aileen, Ray, Amelia W, Percival, Carl J, Sander, Stanley P, Smarte, Matthew D, Winiberg, Frank A F, Okumura, Mitchio, Osborn, David L
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3230
container_issue 14
container_start_page 3221
container_title The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
container_volume 127
creator Rösch, Daniel
Jones, Gregory H
Almeida, Raybel
Caravan, Rebecca L
Hui, Aileen
Ray, Amelia W
Percival, Carl J
Sander, Stanley P
Smarte, Matthew D
Winiberg, Frank A F
Okumura, Mitchio
Osborn, David L
description The concentration of formic acid in Earth's troposphere is underestimated by detailed chemical models compared to field observations. Phototautomerization of acetaldehyde to its less stable tautomer vinyl alcohol, followed by the OH-initiated oxidation of vinyl alcohol, has been proposed as a missing source of formic acid that improves the agreement between models and field measurements. Theoretical investigations of the OH + vinyl alcohol reaction in excess O conclude that OH addition to the α carbon of vinyl alcohol produces formaldehyde + formic acid + OH, whereas OH addition to the β site leads to glycoaldehyde + HO . Furthermore, these studies predict that the conformeric structure of vinyl alcohol controls the reaction pathway, with the -conformer of vinyl alcohol promoting α OH addition, whereas the -conformer promotes β addition. However, the two theoretical studies reach different conclusions regarding which set of products dominate. We studied this reaction using time-resolved multiplexed photoionization mass spectrometry to quantify the product branching fractions. Our results, supported by a detailed kinetic model, conclude that the glycoaldehyde product channel (arising mostly from -vinyl alcohol) dominates over formic acid production with a 3.6:1.0 branching ratio. This result supports the conclusion of Lei et al. that conformer-dependent hydrogen bonding at the transition state for OH-addition controls the reaction outcome. As a result, tropospheric oxidation of vinyl alcohol creates less formic acid than recently thought, increasing again the discrepancy between models and field observations of Earth's formic acid budget.
doi_str_mv 10.1021/acs.jpca.3c00356
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jpca_3c00356</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>37014832</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1112-a3df77af332498484d7b0df8e5a839448e4cf09921ec0f67c9b9f49848e518213</originalsourceid><addsrcrecordid>eNo9kNFLwzAQh4Mobk7ffZK8S-cladfEt1mnEwYTUV9Lll5sR9uUtAP739u56cvdcdx3_PgIuWYwZcDZnTbtdNsYPRUGQESzEzJmEYcg4iw6HWaQKohmQo3IRdtuAYAJHp6TkYiBhVLwMbGJq63zFfrgERusM6w7muRYFW3n-3u6-G7QF9Ww1SV99S7bmY4-eF2bvKi_qLO0y5F-FnVf0nlpXO5KekvXy32hnL6hNl3h6ktyZnXZ4tWxT8jH0-I9WQar9fNLMl8FhjHGAy0yG8faiiGmkqEMs3gDmZUYaSlUGEoMjQWlOEMDdhYbtVH29xIjJjkTEwKHv8a7tvVo02ZIr32fMkj3ytJBWbpXlh6VDcjNAWl2mwqzf-DPkfgBFyFn-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Conformer-Dependent Chemistry: Experimental Product Branching of the Vinyl Alcohol + OH + O 2 Reaction</title><source>American Chemical Society Journals</source><creator>Rösch, Daniel ; Jones, Gregory H ; Almeida, Raybel ; Caravan, Rebecca L ; Hui, Aileen ; Ray, Amelia W ; Percival, Carl J ; Sander, Stanley P ; Smarte, Matthew D ; Winiberg, Frank A F ; Okumura, Mitchio ; Osborn, David L</creator><creatorcontrib>Rösch, Daniel ; Jones, Gregory H ; Almeida, Raybel ; Caravan, Rebecca L ; Hui, Aileen ; Ray, Amelia W ; Percival, Carl J ; Sander, Stanley P ; Smarte, Matthew D ; Winiberg, Frank A F ; Okumura, Mitchio ; Osborn, David L</creatorcontrib><description>The concentration of formic acid in Earth's troposphere is underestimated by detailed chemical models compared to field observations. Phototautomerization of acetaldehyde to its less stable tautomer vinyl alcohol, followed by the OH-initiated oxidation of vinyl alcohol, has been proposed as a missing source of formic acid that improves the agreement between models and field measurements. Theoretical investigations of the OH + vinyl alcohol reaction in excess O conclude that OH addition to the α carbon of vinyl alcohol produces formaldehyde + formic acid + OH, whereas OH addition to the β site leads to glycoaldehyde + HO . Furthermore, these studies predict that the conformeric structure of vinyl alcohol controls the reaction pathway, with the -conformer of vinyl alcohol promoting α OH addition, whereas the -conformer promotes β addition. However, the two theoretical studies reach different conclusions regarding which set of products dominate. We studied this reaction using time-resolved multiplexed photoionization mass spectrometry to quantify the product branching fractions. Our results, supported by a detailed kinetic model, conclude that the glycoaldehyde product channel (arising mostly from -vinyl alcohol) dominates over formic acid production with a 3.6:1.0 branching ratio. This result supports the conclusion of Lei et al. that conformer-dependent hydrogen bonding at the transition state for OH-addition controls the reaction outcome. As a result, tropospheric oxidation of vinyl alcohol creates less formic acid than recently thought, increasing again the discrepancy between models and field observations of Earth's formic acid budget.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/acs.jpca.3c00356</identifier><identifier>PMID: 37014832</identifier><language>eng</language><publisher>United States</publisher><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory, 2023-04, Vol.127 (14), p.3221-3230</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1112-a3df77af332498484d7b0df8e5a839448e4cf09921ec0f67c9b9f49848e518213</citedby><cites>FETCH-LOGICAL-c1112-a3df77af332498484d7b0df8e5a839448e4cf09921ec0f67c9b9f49848e518213</cites><orcidid>0000-0002-2936-7952 ; 0000-0003-1424-3620 ; 0000-0001-6874-1137 ; 0000-0003-2749-3784 ; 0000-0003-3275-1661 ; 0000-0003-4304-8218 ; 0000-0003-2525-160X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2752,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37014832$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rösch, Daniel</creatorcontrib><creatorcontrib>Jones, Gregory H</creatorcontrib><creatorcontrib>Almeida, Raybel</creatorcontrib><creatorcontrib>Caravan, Rebecca L</creatorcontrib><creatorcontrib>Hui, Aileen</creatorcontrib><creatorcontrib>Ray, Amelia W</creatorcontrib><creatorcontrib>Percival, Carl J</creatorcontrib><creatorcontrib>Sander, Stanley P</creatorcontrib><creatorcontrib>Smarte, Matthew D</creatorcontrib><creatorcontrib>Winiberg, Frank A F</creatorcontrib><creatorcontrib>Okumura, Mitchio</creatorcontrib><creatorcontrib>Osborn, David L</creatorcontrib><title>Conformer-Dependent Chemistry: Experimental Product Branching of the Vinyl Alcohol + OH + O 2 Reaction</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</title><addtitle>J Phys Chem A</addtitle><description>The concentration of formic acid in Earth's troposphere is underestimated by detailed chemical models compared to field observations. Phototautomerization of acetaldehyde to its less stable tautomer vinyl alcohol, followed by the OH-initiated oxidation of vinyl alcohol, has been proposed as a missing source of formic acid that improves the agreement between models and field measurements. Theoretical investigations of the OH + vinyl alcohol reaction in excess O conclude that OH addition to the α carbon of vinyl alcohol produces formaldehyde + formic acid + OH, whereas OH addition to the β site leads to glycoaldehyde + HO . Furthermore, these studies predict that the conformeric structure of vinyl alcohol controls the reaction pathway, with the -conformer of vinyl alcohol promoting α OH addition, whereas the -conformer promotes β addition. However, the two theoretical studies reach different conclusions regarding which set of products dominate. We studied this reaction using time-resolved multiplexed photoionization mass spectrometry to quantify the product branching fractions. Our results, supported by a detailed kinetic model, conclude that the glycoaldehyde product channel (arising mostly from -vinyl alcohol) dominates over formic acid production with a 3.6:1.0 branching ratio. This result supports the conclusion of Lei et al. that conformer-dependent hydrogen bonding at the transition state for OH-addition controls the reaction outcome. As a result, tropospheric oxidation of vinyl alcohol creates less formic acid than recently thought, increasing again the discrepancy between models and field observations of Earth's formic acid budget.</description><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kNFLwzAQh4Mobk7ffZK8S-cladfEt1mnEwYTUV9Lll5sR9uUtAP739u56cvdcdx3_PgIuWYwZcDZnTbtdNsYPRUGQESzEzJmEYcg4iw6HWaQKohmQo3IRdtuAYAJHp6TkYiBhVLwMbGJq63zFfrgERusM6w7muRYFW3n-3u6-G7QF9Ww1SV99S7bmY4-eF2bvKi_qLO0y5F-FnVf0nlpXO5KekvXy32hnL6hNl3h6ktyZnXZ4tWxT8jH0-I9WQar9fNLMl8FhjHGAy0yG8faiiGmkqEMs3gDmZUYaSlUGEoMjQWlOEMDdhYbtVH29xIjJjkTEwKHv8a7tvVo02ZIr32fMkj3ytJBWbpXlh6VDcjNAWl2mwqzf-DPkfgBFyFn-Q</recordid><startdate>20230413</startdate><enddate>20230413</enddate><creator>Rösch, Daniel</creator><creator>Jones, Gregory H</creator><creator>Almeida, Raybel</creator><creator>Caravan, Rebecca L</creator><creator>Hui, Aileen</creator><creator>Ray, Amelia W</creator><creator>Percival, Carl J</creator><creator>Sander, Stanley P</creator><creator>Smarte, Matthew D</creator><creator>Winiberg, Frank A F</creator><creator>Okumura, Mitchio</creator><creator>Osborn, David L</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2936-7952</orcidid><orcidid>https://orcid.org/0000-0003-1424-3620</orcidid><orcidid>https://orcid.org/0000-0001-6874-1137</orcidid><orcidid>https://orcid.org/0000-0003-2749-3784</orcidid><orcidid>https://orcid.org/0000-0003-3275-1661</orcidid><orcidid>https://orcid.org/0000-0003-4304-8218</orcidid><orcidid>https://orcid.org/0000-0003-2525-160X</orcidid></search><sort><creationdate>20230413</creationdate><title>Conformer-Dependent Chemistry: Experimental Product Branching of the Vinyl Alcohol + OH + O 2 Reaction</title><author>Rösch, Daniel ; Jones, Gregory H ; Almeida, Raybel ; Caravan, Rebecca L ; Hui, Aileen ; Ray, Amelia W ; Percival, Carl J ; Sander, Stanley P ; Smarte, Matthew D ; Winiberg, Frank A F ; Okumura, Mitchio ; Osborn, David L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1112-a3df77af332498484d7b0df8e5a839448e4cf09921ec0f67c9b9f49848e518213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rösch, Daniel</creatorcontrib><creatorcontrib>Jones, Gregory H</creatorcontrib><creatorcontrib>Almeida, Raybel</creatorcontrib><creatorcontrib>Caravan, Rebecca L</creatorcontrib><creatorcontrib>Hui, Aileen</creatorcontrib><creatorcontrib>Ray, Amelia W</creatorcontrib><creatorcontrib>Percival, Carl J</creatorcontrib><creatorcontrib>Sander, Stanley P</creatorcontrib><creatorcontrib>Smarte, Matthew D</creatorcontrib><creatorcontrib>Winiberg, Frank A F</creatorcontrib><creatorcontrib>Okumura, Mitchio</creatorcontrib><creatorcontrib>Osborn, David L</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rösch, Daniel</au><au>Jones, Gregory H</au><au>Almeida, Raybel</au><au>Caravan, Rebecca L</au><au>Hui, Aileen</au><au>Ray, Amelia W</au><au>Percival, Carl J</au><au>Sander, Stanley P</au><au>Smarte, Matthew D</au><au>Winiberg, Frank A F</au><au>Okumura, Mitchio</au><au>Osborn, David L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conformer-Dependent Chemistry: Experimental Product Branching of the Vinyl Alcohol + OH + O 2 Reaction</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle><addtitle>J Phys Chem A</addtitle><date>2023-04-13</date><risdate>2023</risdate><volume>127</volume><issue>14</issue><spage>3221</spage><epage>3230</epage><pages>3221-3230</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>The concentration of formic acid in Earth's troposphere is underestimated by detailed chemical models compared to field observations. Phototautomerization of acetaldehyde to its less stable tautomer vinyl alcohol, followed by the OH-initiated oxidation of vinyl alcohol, has been proposed as a missing source of formic acid that improves the agreement between models and field measurements. Theoretical investigations of the OH + vinyl alcohol reaction in excess O conclude that OH addition to the α carbon of vinyl alcohol produces formaldehyde + formic acid + OH, whereas OH addition to the β site leads to glycoaldehyde + HO . Furthermore, these studies predict that the conformeric structure of vinyl alcohol controls the reaction pathway, with the -conformer of vinyl alcohol promoting α OH addition, whereas the -conformer promotes β addition. However, the two theoretical studies reach different conclusions regarding which set of products dominate. We studied this reaction using time-resolved multiplexed photoionization mass spectrometry to quantify the product branching fractions. Our results, supported by a detailed kinetic model, conclude that the glycoaldehyde product channel (arising mostly from -vinyl alcohol) dominates over formic acid production with a 3.6:1.0 branching ratio. This result supports the conclusion of Lei et al. that conformer-dependent hydrogen bonding at the transition state for OH-addition controls the reaction outcome. As a result, tropospheric oxidation of vinyl alcohol creates less formic acid than recently thought, increasing again the discrepancy between models and field observations of Earth's formic acid budget.</abstract><cop>United States</cop><pmid>37014832</pmid><doi>10.1021/acs.jpca.3c00356</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2936-7952</orcidid><orcidid>https://orcid.org/0000-0003-1424-3620</orcidid><orcidid>https://orcid.org/0000-0001-6874-1137</orcidid><orcidid>https://orcid.org/0000-0003-2749-3784</orcidid><orcidid>https://orcid.org/0000-0003-3275-1661</orcidid><orcidid>https://orcid.org/0000-0003-4304-8218</orcidid><orcidid>https://orcid.org/0000-0003-2525-160X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1089-5639
ispartof The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2023-04, Vol.127 (14), p.3221-3230
issn 1089-5639
1520-5215
language eng
recordid cdi_crossref_primary_10_1021_acs_jpca_3c00356
source American Chemical Society Journals
title Conformer-Dependent Chemistry: Experimental Product Branching of the Vinyl Alcohol + OH + O 2 Reaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T18%3A28%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conformer-Dependent%20Chemistry:%20Experimental%20Product%20Branching%20of%20the%20Vinyl%20Alcohol%20+%20OH%20+%20O%202%20Reaction&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=R%C3%B6sch,%20Daniel&rft.date=2023-04-13&rft.volume=127&rft.issue=14&rft.spage=3221&rft.epage=3230&rft.pages=3221-3230&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/acs.jpca.3c00356&rft_dat=%3Cpubmed_cross%3E37014832%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/37014832&rfr_iscdi=true