Improvement in ADMET Prediction with Multitask Deep Featurization

The absorption, distribution, metabolism, elimination, and toxicity (ADMET) properties of drug candidates are important for their efficacy and safety as therapeutics. Predicting ADMET properties has therefore been of great interest to the computational chemistry and medicinal chemistry communities i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medicinal chemistry 2020-08, Vol.63 (16), p.8835-8848
Hauptverfasser: Feinberg, Evan N, Joshi, Elizabeth, Pande, Vijay S, Cheng, Alan C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8848
container_issue 16
container_start_page 8835
container_title Journal of medicinal chemistry
container_volume 63
creator Feinberg, Evan N
Joshi, Elizabeth
Pande, Vijay S
Cheng, Alan C
description The absorption, distribution, metabolism, elimination, and toxicity (ADMET) properties of drug candidates are important for their efficacy and safety as therapeutics. Predicting ADMET properties has therefore been of great interest to the computational chemistry and medicinal chemistry communities in recent decades. Traditional cheminformatics approaches, using learners such as random forests and deep neural networks, leverage fingerprint feature representations of molecules. Here, we learn the features most relevant to each chemical task at hand by representing each molecule explicitly as a graph. By applying graph convolutions to this explicit molecular representation, we achieve, to our knowledge, unprecedented accuracy in prediction of ADMET properties. By challenging our methodology with rigorous cross-validation procedures and prognostic analyses, we show that deep featurization better enables molecular predictors to not only interpolate but also extrapolate to new regions of chemical space.
doi_str_mv 10.1021/acs.jmedchem.9b02187
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jmedchem_9b02187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>h09985189</sourcerecordid><originalsourceid>FETCH-LOGICAL-a348t-640e545bcabd73a449873b16834fda28badd7c6c5b5be48942fc19a6a5f8a26e3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqXwBwjlB1L8iuMsqz6gUitYlHU0dhzVpXnIdkDw9aS0ZclqpJl7rjQHoXuCxwRT8gjaj3eVKfTWVONM9SuZXqAhSSiOucT8Eg0xpjSmgrIBuvF-hzFmhLJrNGCUSiEpH6LJsmpd82EqU4fI1tFktp5voldnCquDbero04ZttO72wQbw79HMmDZaGAids99wSNyiqxL23tyd5gi9Leab6XO8enlaTierGBiXIRYcm4QnSoMqUgacZzJligjJeFkAlQqKItVCJypRhsuM01KTDAQkpQQqDBshfuzVrvHemTJvna3AfeUE5wcjeW8kPxvJT0Z67OGItZ3qb3_QWUEfwMfAL950ru6_-L_zB4z-cJ8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Improvement in ADMET Prediction with Multitask Deep Featurization</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Feinberg, Evan N ; Joshi, Elizabeth ; Pande, Vijay S ; Cheng, Alan C</creator><creatorcontrib>Feinberg, Evan N ; Joshi, Elizabeth ; Pande, Vijay S ; Cheng, Alan C</creatorcontrib><description>The absorption, distribution, metabolism, elimination, and toxicity (ADMET) properties of drug candidates are important for their efficacy and safety as therapeutics. Predicting ADMET properties has therefore been of great interest to the computational chemistry and medicinal chemistry communities in recent decades. Traditional cheminformatics approaches, using learners such as random forests and deep neural networks, leverage fingerprint feature representations of molecules. Here, we learn the features most relevant to each chemical task at hand by representing each molecule explicitly as a graph. By applying graph convolutions to this explicit molecular representation, we achieve, to our knowledge, unprecedented accuracy in prediction of ADMET properties. By challenging our methodology with rigorous cross-validation procedures and prognostic analyses, we show that deep featurization better enables molecular predictors to not only interpolate but also extrapolate to new regions of chemical space.</description><identifier>ISSN: 0022-2623</identifier><identifier>EISSN: 1520-4804</identifier><identifier>DOI: 10.1021/acs.jmedchem.9b02187</identifier><identifier>PMID: 32286824</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Chemistry, Pharmaceutical - methods ; Computational Chemistry - methods ; Datasets as Topic ; Deep Learning ; Humans ; Organic Chemicals - pharmacokinetics ; Supervised Machine Learning</subject><ispartof>Journal of medicinal chemistry, 2020-08, Vol.63 (16), p.8835-8848</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a348t-640e545bcabd73a449873b16834fda28badd7c6c5b5be48942fc19a6a5f8a26e3</citedby><cites>FETCH-LOGICAL-a348t-640e545bcabd73a449873b16834fda28badd7c6c5b5be48942fc19a6a5f8a26e3</cites><orcidid>0000-0003-3645-172X ; 0000-0002-7989-8751 ; 0000-0003-3267-0634</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jmedchem.9b02187$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jmedchem.9b02187$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32286824$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Feinberg, Evan N</creatorcontrib><creatorcontrib>Joshi, Elizabeth</creatorcontrib><creatorcontrib>Pande, Vijay S</creatorcontrib><creatorcontrib>Cheng, Alan C</creatorcontrib><title>Improvement in ADMET Prediction with Multitask Deep Featurization</title><title>Journal of medicinal chemistry</title><addtitle>J. Med. Chem</addtitle><description>The absorption, distribution, metabolism, elimination, and toxicity (ADMET) properties of drug candidates are important for their efficacy and safety as therapeutics. Predicting ADMET properties has therefore been of great interest to the computational chemistry and medicinal chemistry communities in recent decades. Traditional cheminformatics approaches, using learners such as random forests and deep neural networks, leverage fingerprint feature representations of molecules. Here, we learn the features most relevant to each chemical task at hand by representing each molecule explicitly as a graph. By applying graph convolutions to this explicit molecular representation, we achieve, to our knowledge, unprecedented accuracy in prediction of ADMET properties. By challenging our methodology with rigorous cross-validation procedures and prognostic analyses, we show that deep featurization better enables molecular predictors to not only interpolate but also extrapolate to new regions of chemical space.</description><subject>Animals</subject><subject>Chemistry, Pharmaceutical - methods</subject><subject>Computational Chemistry - methods</subject><subject>Datasets as Topic</subject><subject>Deep Learning</subject><subject>Humans</subject><subject>Organic Chemicals - pharmacokinetics</subject><subject>Supervised Machine Learning</subject><issn>0022-2623</issn><issn>1520-4804</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtOwzAQRS0EoqXwBwjlB1L8iuMsqz6gUitYlHU0dhzVpXnIdkDw9aS0ZclqpJl7rjQHoXuCxwRT8gjaj3eVKfTWVONM9SuZXqAhSSiOucT8Eg0xpjSmgrIBuvF-hzFmhLJrNGCUSiEpH6LJsmpd82EqU4fI1tFktp5voldnCquDbero04ZttO72wQbw79HMmDZaGAids99wSNyiqxL23tyd5gi9Leab6XO8enlaTierGBiXIRYcm4QnSoMqUgacZzJligjJeFkAlQqKItVCJypRhsuM01KTDAQkpQQqDBshfuzVrvHemTJvna3AfeUE5wcjeW8kPxvJT0Z67OGItZ3qb3_QWUEfwMfAL950ru6_-L_zB4z-cJ8</recordid><startdate>20200827</startdate><enddate>20200827</enddate><creator>Feinberg, Evan N</creator><creator>Joshi, Elizabeth</creator><creator>Pande, Vijay S</creator><creator>Cheng, Alan C</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3645-172X</orcidid><orcidid>https://orcid.org/0000-0002-7989-8751</orcidid><orcidid>https://orcid.org/0000-0003-3267-0634</orcidid></search><sort><creationdate>20200827</creationdate><title>Improvement in ADMET Prediction with Multitask Deep Featurization</title><author>Feinberg, Evan N ; Joshi, Elizabeth ; Pande, Vijay S ; Cheng, Alan C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a348t-640e545bcabd73a449873b16834fda28badd7c6c5b5be48942fc19a6a5f8a26e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Chemistry, Pharmaceutical - methods</topic><topic>Computational Chemistry - methods</topic><topic>Datasets as Topic</topic><topic>Deep Learning</topic><topic>Humans</topic><topic>Organic Chemicals - pharmacokinetics</topic><topic>Supervised Machine Learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feinberg, Evan N</creatorcontrib><creatorcontrib>Joshi, Elizabeth</creatorcontrib><creatorcontrib>Pande, Vijay S</creatorcontrib><creatorcontrib>Cheng, Alan C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Journal of medicinal chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feinberg, Evan N</au><au>Joshi, Elizabeth</au><au>Pande, Vijay S</au><au>Cheng, Alan C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improvement in ADMET Prediction with Multitask Deep Featurization</atitle><jtitle>Journal of medicinal chemistry</jtitle><addtitle>J. Med. Chem</addtitle><date>2020-08-27</date><risdate>2020</risdate><volume>63</volume><issue>16</issue><spage>8835</spage><epage>8848</epage><pages>8835-8848</pages><issn>0022-2623</issn><eissn>1520-4804</eissn><abstract>The absorption, distribution, metabolism, elimination, and toxicity (ADMET) properties of drug candidates are important for their efficacy and safety as therapeutics. Predicting ADMET properties has therefore been of great interest to the computational chemistry and medicinal chemistry communities in recent decades. Traditional cheminformatics approaches, using learners such as random forests and deep neural networks, leverage fingerprint feature representations of molecules. Here, we learn the features most relevant to each chemical task at hand by representing each molecule explicitly as a graph. By applying graph convolutions to this explicit molecular representation, we achieve, to our knowledge, unprecedented accuracy in prediction of ADMET properties. By challenging our methodology with rigorous cross-validation procedures and prognostic analyses, we show that deep featurization better enables molecular predictors to not only interpolate but also extrapolate to new regions of chemical space.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32286824</pmid><doi>10.1021/acs.jmedchem.9b02187</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3645-172X</orcidid><orcidid>https://orcid.org/0000-0002-7989-8751</orcidid><orcidid>https://orcid.org/0000-0003-3267-0634</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2623
ispartof Journal of medicinal chemistry, 2020-08, Vol.63 (16), p.8835-8848
issn 0022-2623
1520-4804
language eng
recordid cdi_crossref_primary_10_1021_acs_jmedchem_9b02187
source MEDLINE; American Chemical Society Journals
subjects Animals
Chemistry, Pharmaceutical - methods
Computational Chemistry - methods
Datasets as Topic
Deep Learning
Humans
Organic Chemicals - pharmacokinetics
Supervised Machine Learning
title Improvement in ADMET Prediction with Multitask Deep Featurization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T04%3A10%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improvement%20in%20ADMET%20Prediction%20with%20Multitask%20Deep%20Featurization&rft.jtitle=Journal%20of%20medicinal%20chemistry&rft.au=Feinberg,%20Evan%20N&rft.date=2020-08-27&rft.volume=63&rft.issue=16&rft.spage=8835&rft.epage=8848&rft.pages=8835-8848&rft.issn=0022-2623&rft.eissn=1520-4804&rft_id=info:doi/10.1021/acs.jmedchem.9b02187&rft_dat=%3Cacs_cross%3Eh09985189%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/32286824&rfr_iscdi=true