Improvement in ADMET Prediction with Multitask Deep Featurization
The absorption, distribution, metabolism, elimination, and toxicity (ADMET) properties of drug candidates are important for their efficacy and safety as therapeutics. Predicting ADMET properties has therefore been of great interest to the computational chemistry and medicinal chemistry communities i...
Gespeichert in:
Veröffentlicht in: | Journal of medicinal chemistry 2020-08, Vol.63 (16), p.8835-8848 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8848 |
---|---|
container_issue | 16 |
container_start_page | 8835 |
container_title | Journal of medicinal chemistry |
container_volume | 63 |
creator | Feinberg, Evan N Joshi, Elizabeth Pande, Vijay S Cheng, Alan C |
description | The absorption, distribution, metabolism, elimination, and toxicity (ADMET) properties of drug candidates are important for their efficacy and safety as therapeutics. Predicting ADMET properties has therefore been of great interest to the computational chemistry and medicinal chemistry communities in recent decades. Traditional cheminformatics approaches, using learners such as random forests and deep neural networks, leverage fingerprint feature representations of molecules. Here, we learn the features most relevant to each chemical task at hand by representing each molecule explicitly as a graph. By applying graph convolutions to this explicit molecular representation, we achieve, to our knowledge, unprecedented accuracy in prediction of ADMET properties. By challenging our methodology with rigorous cross-validation procedures and prognostic analyses, we show that deep featurization better enables molecular predictors to not only interpolate but also extrapolate to new regions of chemical space. |
doi_str_mv | 10.1021/acs.jmedchem.9b02187 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jmedchem_9b02187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>h09985189</sourcerecordid><originalsourceid>FETCH-LOGICAL-a348t-640e545bcabd73a449873b16834fda28badd7c6c5b5be48942fc19a6a5f8a26e3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqXwBwjlB1L8iuMsqz6gUitYlHU0dhzVpXnIdkDw9aS0ZclqpJl7rjQHoXuCxwRT8gjaj3eVKfTWVONM9SuZXqAhSSiOucT8Eg0xpjSmgrIBuvF-hzFmhLJrNGCUSiEpH6LJsmpd82EqU4fI1tFktp5voldnCquDbero04ZttO72wQbw79HMmDZaGAids99wSNyiqxL23tyd5gi9Leab6XO8enlaTierGBiXIRYcm4QnSoMqUgacZzJligjJeFkAlQqKItVCJypRhsuM01KTDAQkpQQqDBshfuzVrvHemTJvna3AfeUE5wcjeW8kPxvJT0Z67OGItZ3qb3_QWUEfwMfAL950ru6_-L_zB4z-cJ8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Improvement in ADMET Prediction with Multitask Deep Featurization</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Feinberg, Evan N ; Joshi, Elizabeth ; Pande, Vijay S ; Cheng, Alan C</creator><creatorcontrib>Feinberg, Evan N ; Joshi, Elizabeth ; Pande, Vijay S ; Cheng, Alan C</creatorcontrib><description>The absorption, distribution, metabolism, elimination, and toxicity (ADMET) properties of drug candidates are important for their efficacy and safety as therapeutics. Predicting ADMET properties has therefore been of great interest to the computational chemistry and medicinal chemistry communities in recent decades. Traditional cheminformatics approaches, using learners such as random forests and deep neural networks, leverage fingerprint feature representations of molecules. Here, we learn the features most relevant to each chemical task at hand by representing each molecule explicitly as a graph. By applying graph convolutions to this explicit molecular representation, we achieve, to our knowledge, unprecedented accuracy in prediction of ADMET properties. By challenging our methodology with rigorous cross-validation procedures and prognostic analyses, we show that deep featurization better enables molecular predictors to not only interpolate but also extrapolate to new regions of chemical space.</description><identifier>ISSN: 0022-2623</identifier><identifier>EISSN: 1520-4804</identifier><identifier>DOI: 10.1021/acs.jmedchem.9b02187</identifier><identifier>PMID: 32286824</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Chemistry, Pharmaceutical - methods ; Computational Chemistry - methods ; Datasets as Topic ; Deep Learning ; Humans ; Organic Chemicals - pharmacokinetics ; Supervised Machine Learning</subject><ispartof>Journal of medicinal chemistry, 2020-08, Vol.63 (16), p.8835-8848</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a348t-640e545bcabd73a449873b16834fda28badd7c6c5b5be48942fc19a6a5f8a26e3</citedby><cites>FETCH-LOGICAL-a348t-640e545bcabd73a449873b16834fda28badd7c6c5b5be48942fc19a6a5f8a26e3</cites><orcidid>0000-0003-3645-172X ; 0000-0002-7989-8751 ; 0000-0003-3267-0634</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jmedchem.9b02187$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jmedchem.9b02187$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32286824$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Feinberg, Evan N</creatorcontrib><creatorcontrib>Joshi, Elizabeth</creatorcontrib><creatorcontrib>Pande, Vijay S</creatorcontrib><creatorcontrib>Cheng, Alan C</creatorcontrib><title>Improvement in ADMET Prediction with Multitask Deep Featurization</title><title>Journal of medicinal chemistry</title><addtitle>J. Med. Chem</addtitle><description>The absorption, distribution, metabolism, elimination, and toxicity (ADMET) properties of drug candidates are important for their efficacy and safety as therapeutics. Predicting ADMET properties has therefore been of great interest to the computational chemistry and medicinal chemistry communities in recent decades. Traditional cheminformatics approaches, using learners such as random forests and deep neural networks, leverage fingerprint feature representations of molecules. Here, we learn the features most relevant to each chemical task at hand by representing each molecule explicitly as a graph. By applying graph convolutions to this explicit molecular representation, we achieve, to our knowledge, unprecedented accuracy in prediction of ADMET properties. By challenging our methodology with rigorous cross-validation procedures and prognostic analyses, we show that deep featurization better enables molecular predictors to not only interpolate but also extrapolate to new regions of chemical space.</description><subject>Animals</subject><subject>Chemistry, Pharmaceutical - methods</subject><subject>Computational Chemistry - methods</subject><subject>Datasets as Topic</subject><subject>Deep Learning</subject><subject>Humans</subject><subject>Organic Chemicals - pharmacokinetics</subject><subject>Supervised Machine Learning</subject><issn>0022-2623</issn><issn>1520-4804</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtOwzAQRS0EoqXwBwjlB1L8iuMsqz6gUitYlHU0dhzVpXnIdkDw9aS0ZclqpJl7rjQHoXuCxwRT8gjaj3eVKfTWVONM9SuZXqAhSSiOucT8Eg0xpjSmgrIBuvF-hzFmhLJrNGCUSiEpH6LJsmpd82EqU4fI1tFktp5voldnCquDbero04ZttO72wQbw79HMmDZaGAids99wSNyiqxL23tyd5gi9Leab6XO8enlaTierGBiXIRYcm4QnSoMqUgacZzJligjJeFkAlQqKItVCJypRhsuM01KTDAQkpQQqDBshfuzVrvHemTJvna3AfeUE5wcjeW8kPxvJT0Z67OGItZ3qb3_QWUEfwMfAL950ru6_-L_zB4z-cJ8</recordid><startdate>20200827</startdate><enddate>20200827</enddate><creator>Feinberg, Evan N</creator><creator>Joshi, Elizabeth</creator><creator>Pande, Vijay S</creator><creator>Cheng, Alan C</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3645-172X</orcidid><orcidid>https://orcid.org/0000-0002-7989-8751</orcidid><orcidid>https://orcid.org/0000-0003-3267-0634</orcidid></search><sort><creationdate>20200827</creationdate><title>Improvement in ADMET Prediction with Multitask Deep Featurization</title><author>Feinberg, Evan N ; Joshi, Elizabeth ; Pande, Vijay S ; Cheng, Alan C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a348t-640e545bcabd73a449873b16834fda28badd7c6c5b5be48942fc19a6a5f8a26e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Chemistry, Pharmaceutical - methods</topic><topic>Computational Chemistry - methods</topic><topic>Datasets as Topic</topic><topic>Deep Learning</topic><topic>Humans</topic><topic>Organic Chemicals - pharmacokinetics</topic><topic>Supervised Machine Learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feinberg, Evan N</creatorcontrib><creatorcontrib>Joshi, Elizabeth</creatorcontrib><creatorcontrib>Pande, Vijay S</creatorcontrib><creatorcontrib>Cheng, Alan C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Journal of medicinal chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feinberg, Evan N</au><au>Joshi, Elizabeth</au><au>Pande, Vijay S</au><au>Cheng, Alan C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improvement in ADMET Prediction with Multitask Deep Featurization</atitle><jtitle>Journal of medicinal chemistry</jtitle><addtitle>J. Med. Chem</addtitle><date>2020-08-27</date><risdate>2020</risdate><volume>63</volume><issue>16</issue><spage>8835</spage><epage>8848</epage><pages>8835-8848</pages><issn>0022-2623</issn><eissn>1520-4804</eissn><abstract>The absorption, distribution, metabolism, elimination, and toxicity (ADMET) properties of drug candidates are important for their efficacy and safety as therapeutics. Predicting ADMET properties has therefore been of great interest to the computational chemistry and medicinal chemistry communities in recent decades. Traditional cheminformatics approaches, using learners such as random forests and deep neural networks, leverage fingerprint feature representations of molecules. Here, we learn the features most relevant to each chemical task at hand by representing each molecule explicitly as a graph. By applying graph convolutions to this explicit molecular representation, we achieve, to our knowledge, unprecedented accuracy in prediction of ADMET properties. By challenging our methodology with rigorous cross-validation procedures and prognostic analyses, we show that deep featurization better enables molecular predictors to not only interpolate but also extrapolate to new regions of chemical space.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32286824</pmid><doi>10.1021/acs.jmedchem.9b02187</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3645-172X</orcidid><orcidid>https://orcid.org/0000-0002-7989-8751</orcidid><orcidid>https://orcid.org/0000-0003-3267-0634</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2623 |
ispartof | Journal of medicinal chemistry, 2020-08, Vol.63 (16), p.8835-8848 |
issn | 0022-2623 1520-4804 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acs_jmedchem_9b02187 |
source | MEDLINE; American Chemical Society Journals |
subjects | Animals Chemistry, Pharmaceutical - methods Computational Chemistry - methods Datasets as Topic Deep Learning Humans Organic Chemicals - pharmacokinetics Supervised Machine Learning |
title | Improvement in ADMET Prediction with Multitask Deep Featurization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T04%3A10%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improvement%20in%20ADMET%20Prediction%20with%20Multitask%20Deep%20Featurization&rft.jtitle=Journal%20of%20medicinal%20chemistry&rft.au=Feinberg,%20Evan%20N&rft.date=2020-08-27&rft.volume=63&rft.issue=16&rft.spage=8835&rft.epage=8848&rft.pages=8835-8848&rft.issn=0022-2623&rft.eissn=1520-4804&rft_id=info:doi/10.1021/acs.jmedchem.9b02187&rft_dat=%3Cacs_cross%3Eh09985189%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/32286824&rfr_iscdi=true |