Prediction of p K a Using Machine Learning Methods with Rooted Topological Torsion Fingerprints: Application to Aliphatic Amines
The acid-base dissociation constant, p , is a key parameter to define the ionization state of a compound and directly affects its biopharmaceutical profile. In this study, we developed a novel approach for p prediction using rooted topological torsion fingerprints in combination with five machine le...
Gespeichert in:
Veröffentlicht in: | Journal of chemical information and modeling 2019-11, Vol.59 (11), p.4706-4719 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4719 |
---|---|
container_issue | 11 |
container_start_page | 4706 |
container_title | Journal of chemical information and modeling |
container_volume | 59 |
creator | Lu, Yipin Anand, Shankara Shirley, William Gedeck, Peter Kelley, Brian P Skolnik, Suzanne Rodde, Stephane Nguyen, Mai Lindvall, Mika Jia, Weiping |
description | The acid-base dissociation constant, p
, is a key parameter to define the ionization state of a compound and directly affects its biopharmaceutical profile. In this study, we developed a novel approach for p
prediction using rooted topological torsion fingerprints in combination with five machine learning (ML) methods: random forest, partial least squares, extreme gradient boosting, lasso regression, and support vector regression. With a large and diverse set of 14 499 experimental p
values, p
models were developed for aliphatic amines. The models demonstrated consistently good prediction statistics and were able to generate accurate prospective predictions as validated with an external test set of 726 p
values (RMSE 0.45, MAE 0.33, and
0.84 by the top model). The factors that may affect prediction accuracy and model applicability were carefully assessed. The results demonstrated that rooted topological torsion fingerprints coupled with ML methods provide a promising approach for developing accurate p
prediction models. |
doi_str_mv | 10.1021/acs.jcim.9b00498 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jcim_9b00498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>31647238</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1118-a57e0adae17417449bdb6c5f9b2286d134942e48eaa215bacc473975e9bf74a13</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMobk7vvZL8gc6kST_iXRlOxYkiG3hXkjRdM9omJB3inT_d7EsInPec5H1PeAC4xWiKUYzvufTTjdTdlAmEKMvPwBgnlEUsRV_nJ52wdASuvN8gRAhL40swIjilWUzyMfj9cKrSctCmh6aGFr5CDlde92v4xmWjewUXirt-P1BDYyoPv_XQwE9jBlXBpbGmNWsteRu087uceXisnHW6H_wDLKxtw_V-w2Bg0WrbhE7Cogvp_hpc1Lz16uZYJ2A1f1zOnqPF-9PLrFhEEmOcRzzJFOIVVzij4VAmKpHKpGYijvO0woQyGiuaK85jnAguJc0IyxLFRJ1RjskEoEOudMZ7p-oyfLDj7qfEqNzBLAPMcgezPMIMlruDxW5Fp6p_w4ke-QOKr3QF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Prediction of p K a Using Machine Learning Methods with Rooted Topological Torsion Fingerprints: Application to Aliphatic Amines</title><source>ACS Publications</source><creator>Lu, Yipin ; Anand, Shankara ; Shirley, William ; Gedeck, Peter ; Kelley, Brian P ; Skolnik, Suzanne ; Rodde, Stephane ; Nguyen, Mai ; Lindvall, Mika ; Jia, Weiping</creator><creatorcontrib>Lu, Yipin ; Anand, Shankara ; Shirley, William ; Gedeck, Peter ; Kelley, Brian P ; Skolnik, Suzanne ; Rodde, Stephane ; Nguyen, Mai ; Lindvall, Mika ; Jia, Weiping</creatorcontrib><description>The acid-base dissociation constant, p
, is a key parameter to define the ionization state of a compound and directly affects its biopharmaceutical profile. In this study, we developed a novel approach for p
prediction using rooted topological torsion fingerprints in combination with five machine learning (ML) methods: random forest, partial least squares, extreme gradient boosting, lasso regression, and support vector regression. With a large and diverse set of 14 499 experimental p
values, p
models were developed for aliphatic amines. The models demonstrated consistently good prediction statistics and were able to generate accurate prospective predictions as validated with an external test set of 726 p
values (RMSE 0.45, MAE 0.33, and
0.84 by the top model). The factors that may affect prediction accuracy and model applicability were carefully assessed. The results demonstrated that rooted topological torsion fingerprints coupled with ML methods provide a promising approach for developing accurate p
prediction models.</description><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.9b00498</identifier><identifier>PMID: 31647238</identifier><language>eng</language><publisher>United States</publisher><ispartof>Journal of chemical information and modeling, 2019-11, Vol.59 (11), p.4706-4719</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1118-a57e0adae17417449bdb6c5f9b2286d134942e48eaa215bacc473975e9bf74a13</citedby><cites>FETCH-LOGICAL-c1118-a57e0adae17417449bdb6c5f9b2286d134942e48eaa215bacc473975e9bf74a13</cites><orcidid>0000-0002-4111-3162 ; 0000-0002-3400-4400 ; 0000-0001-6559-2420 ; 0000-0002-5637-8948</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2752,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31647238$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Yipin</creatorcontrib><creatorcontrib>Anand, Shankara</creatorcontrib><creatorcontrib>Shirley, William</creatorcontrib><creatorcontrib>Gedeck, Peter</creatorcontrib><creatorcontrib>Kelley, Brian P</creatorcontrib><creatorcontrib>Skolnik, Suzanne</creatorcontrib><creatorcontrib>Rodde, Stephane</creatorcontrib><creatorcontrib>Nguyen, Mai</creatorcontrib><creatorcontrib>Lindvall, Mika</creatorcontrib><creatorcontrib>Jia, Weiping</creatorcontrib><title>Prediction of p K a Using Machine Learning Methods with Rooted Topological Torsion Fingerprints: Application to Aliphatic Amines</title><title>Journal of chemical information and modeling</title><addtitle>J Chem Inf Model</addtitle><description>The acid-base dissociation constant, p
, is a key parameter to define the ionization state of a compound and directly affects its biopharmaceutical profile. In this study, we developed a novel approach for p
prediction using rooted topological torsion fingerprints in combination with five machine learning (ML) methods: random forest, partial least squares, extreme gradient boosting, lasso regression, and support vector regression. With a large and diverse set of 14 499 experimental p
values, p
models were developed for aliphatic amines. The models demonstrated consistently good prediction statistics and were able to generate accurate prospective predictions as validated with an external test set of 726 p
values (RMSE 0.45, MAE 0.33, and
0.84 by the top model). The factors that may affect prediction accuracy and model applicability were carefully assessed. The results demonstrated that rooted topological torsion fingerprints coupled with ML methods provide a promising approach for developing accurate p
prediction models.</description><issn>1549-9596</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhoMobk7vvZL8gc6kST_iXRlOxYkiG3hXkjRdM9omJB3inT_d7EsInPec5H1PeAC4xWiKUYzvufTTjdTdlAmEKMvPwBgnlEUsRV_nJ52wdASuvN8gRAhL40swIjilWUzyMfj9cKrSctCmh6aGFr5CDlde92v4xmWjewUXirt-P1BDYyoPv_XQwE9jBlXBpbGmNWsteRu087uceXisnHW6H_wDLKxtw_V-w2Bg0WrbhE7Cogvp_hpc1Lz16uZYJ2A1f1zOnqPF-9PLrFhEEmOcRzzJFOIVVzij4VAmKpHKpGYijvO0woQyGiuaK85jnAguJc0IyxLFRJ1RjskEoEOudMZ7p-oyfLDj7qfEqNzBLAPMcgezPMIMlruDxW5Fp6p_w4ke-QOKr3QF</recordid><startdate>20191125</startdate><enddate>20191125</enddate><creator>Lu, Yipin</creator><creator>Anand, Shankara</creator><creator>Shirley, William</creator><creator>Gedeck, Peter</creator><creator>Kelley, Brian P</creator><creator>Skolnik, Suzanne</creator><creator>Rodde, Stephane</creator><creator>Nguyen, Mai</creator><creator>Lindvall, Mika</creator><creator>Jia, Weiping</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4111-3162</orcidid><orcidid>https://orcid.org/0000-0002-3400-4400</orcidid><orcidid>https://orcid.org/0000-0001-6559-2420</orcidid><orcidid>https://orcid.org/0000-0002-5637-8948</orcidid></search><sort><creationdate>20191125</creationdate><title>Prediction of p K a Using Machine Learning Methods with Rooted Topological Torsion Fingerprints: Application to Aliphatic Amines</title><author>Lu, Yipin ; Anand, Shankara ; Shirley, William ; Gedeck, Peter ; Kelley, Brian P ; Skolnik, Suzanne ; Rodde, Stephane ; Nguyen, Mai ; Lindvall, Mika ; Jia, Weiping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1118-a57e0adae17417449bdb6c5f9b2286d134942e48eaa215bacc473975e9bf74a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Yipin</creatorcontrib><creatorcontrib>Anand, Shankara</creatorcontrib><creatorcontrib>Shirley, William</creatorcontrib><creatorcontrib>Gedeck, Peter</creatorcontrib><creatorcontrib>Kelley, Brian P</creatorcontrib><creatorcontrib>Skolnik, Suzanne</creatorcontrib><creatorcontrib>Rodde, Stephane</creatorcontrib><creatorcontrib>Nguyen, Mai</creatorcontrib><creatorcontrib>Lindvall, Mika</creatorcontrib><creatorcontrib>Jia, Weiping</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Yipin</au><au>Anand, Shankara</au><au>Shirley, William</au><au>Gedeck, Peter</au><au>Kelley, Brian P</au><au>Skolnik, Suzanne</au><au>Rodde, Stephane</au><au>Nguyen, Mai</au><au>Lindvall, Mika</au><au>Jia, Weiping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of p K a Using Machine Learning Methods with Rooted Topological Torsion Fingerprints: Application to Aliphatic Amines</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J Chem Inf Model</addtitle><date>2019-11-25</date><risdate>2019</risdate><volume>59</volume><issue>11</issue><spage>4706</spage><epage>4719</epage><pages>4706-4719</pages><issn>1549-9596</issn><eissn>1549-960X</eissn><abstract>The acid-base dissociation constant, p
, is a key parameter to define the ionization state of a compound and directly affects its biopharmaceutical profile. In this study, we developed a novel approach for p
prediction using rooted topological torsion fingerprints in combination with five machine learning (ML) methods: random forest, partial least squares, extreme gradient boosting, lasso regression, and support vector regression. With a large and diverse set of 14 499 experimental p
values, p
models were developed for aliphatic amines. The models demonstrated consistently good prediction statistics and were able to generate accurate prospective predictions as validated with an external test set of 726 p
values (RMSE 0.45, MAE 0.33, and
0.84 by the top model). The factors that may affect prediction accuracy and model applicability were carefully assessed. The results demonstrated that rooted topological torsion fingerprints coupled with ML methods provide a promising approach for developing accurate p
prediction models.</abstract><cop>United States</cop><pmid>31647238</pmid><doi>10.1021/acs.jcim.9b00498</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4111-3162</orcidid><orcidid>https://orcid.org/0000-0002-3400-4400</orcidid><orcidid>https://orcid.org/0000-0001-6559-2420</orcidid><orcidid>https://orcid.org/0000-0002-5637-8948</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9596 |
ispartof | Journal of chemical information and modeling, 2019-11, Vol.59 (11), p.4706-4719 |
issn | 1549-9596 1549-960X |
language | eng |
recordid | cdi_crossref_primary_10_1021_acs_jcim_9b00498 |
source | ACS Publications |
title | Prediction of p K a Using Machine Learning Methods with Rooted Topological Torsion Fingerprints: Application to Aliphatic Amines |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T18%3A53%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20p%20K%20a%20Using%20Machine%20Learning%20Methods%20with%20Rooted%20Topological%20Torsion%20Fingerprints:%20Application%20to%20Aliphatic%20Amines&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Lu,%20Yipin&rft.date=2019-11-25&rft.volume=59&rft.issue=11&rft.spage=4706&rft.epage=4719&rft.pages=4706-4719&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.9b00498&rft_dat=%3Cpubmed_cross%3E31647238%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/31647238&rfr_iscdi=true |