Benchmarking In Silico Tools for Cysteine p K a Prediction
Accurate estimation of the p 's of cysteine residues in proteins could inform targeted approaches in hit discovery. The p of a targetable cysteine residue in a disease-related protein is an important physiochemical parameter in covalent drug discovery, as it influences the fraction of nucleophi...
Gespeichert in:
Veröffentlicht in: | Journal of chemical information and modeling 2023-04, Vol.63 (7), p.2170-2180 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2180 |
---|---|
container_issue | 7 |
container_start_page | 2170 |
container_title | Journal of chemical information and modeling |
container_volume | 63 |
creator | Awoonor-Williams, Ernest Golosov, Andrei A Hornak, Viktor |
description | Accurate estimation of the p
's of cysteine residues in proteins could inform targeted approaches in hit discovery. The p
of a targetable cysteine residue in a disease-related protein is an important physiochemical parameter in covalent drug discovery, as it influences the fraction of nucleophilic thiolate amenable to chemical protein modification. Traditional structure-based
tools are limited in their predictive accuracy of cysteine p
's relative to other titratable residues. Additionally, there are limited comprehensive benchmark assessments for cysteine p
predictive tools. This raises the need for extensive assessment and evaluation of methods for cysteine p
prediction. Here, we report the performance of several computational p
methods, including single-structure and ensemble-based approaches, on a diverse test set of experimental cysteine p
's retrieved from the PKAD database. The dataset consisted of 16 wildtype and 10 mutant proteins with experimentally measured cysteine p
values. Our results highlight that these methods are varied in their overall predictive accuracies. Among the test set of wildtype proteins evaluated, the best method (MOE) yielded a mean absolute error of 2.3 p
units, highlighting the need for improvement of existing p
methods for accurate cysteine p
estimation. Given the limited accuracy of these methods, further development is needed before these approaches can be routinely employed to drive design decisions in early drug discovery efforts. |
doi_str_mv | 10.1021/acs.jcim.3c00004 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jcim_3c00004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>36996330</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1110-87d3f54ee96cdac601ff15284a29b1fadc46e9b732b3f738beed9ea58812fe553</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EoqWwZ4X8Awl2HDsxO4gKVFQCiSKxsxx7DC55yS6L_j2p2jKbmc0Z3XsQuqYkpSSjt9rEdG18mzJDxslP0JTyXCZSkM_T482lmKCLGNeEMCZFdo4mTEgpGCNTdPcAnfludfjx3RdedPjdN970eNX3TcSuD7jaxg34DvCAX7DGbwGsNxvfd5fozOkmwtVhz9DH43xVPSfL16dFdb9MDKWUJGVhmeM5gBTGaiMIdY7yrMx1JmvqtDW5AFkXLKuZK1hZA1gJmpclzRxwzmaI7P-a0McYwKkh-DHxVlGidhrUqEHtNKiDhhG52SPDb92C_QeOvdkf1TpaGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Benchmarking In Silico Tools for Cysteine p K a Prediction</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Awoonor-Williams, Ernest ; Golosov, Andrei A ; Hornak, Viktor</creator><creatorcontrib>Awoonor-Williams, Ernest ; Golosov, Andrei A ; Hornak, Viktor</creatorcontrib><description>Accurate estimation of the p
's of cysteine residues in proteins could inform targeted approaches in hit discovery. The p
of a targetable cysteine residue in a disease-related protein is an important physiochemical parameter in covalent drug discovery, as it influences the fraction of nucleophilic thiolate amenable to chemical protein modification. Traditional structure-based
tools are limited in their predictive accuracy of cysteine p
's relative to other titratable residues. Additionally, there are limited comprehensive benchmark assessments for cysteine p
predictive tools. This raises the need for extensive assessment and evaluation of methods for cysteine p
prediction. Here, we report the performance of several computational p
methods, including single-structure and ensemble-based approaches, on a diverse test set of experimental cysteine p
's retrieved from the PKAD database. The dataset consisted of 16 wildtype and 10 mutant proteins with experimentally measured cysteine p
values. Our results highlight that these methods are varied in their overall predictive accuracies. Among the test set of wildtype proteins evaluated, the best method (MOE) yielded a mean absolute error of 2.3 p
units, highlighting the need for improvement of existing p
methods for accurate cysteine p
estimation. Given the limited accuracy of these methods, further development is needed before these approaches can be routinely employed to drive design decisions in early drug discovery efforts.</description><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.3c00004</identifier><identifier>PMID: 36996330</identifier><language>eng</language><publisher>United States</publisher><subject>Benchmarking ; Cysteine - chemistry ; Mutant Proteins ; Proteins - chemistry</subject><ispartof>Journal of chemical information and modeling, 2023-04, Vol.63 (7), p.2170-2180</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1110-87d3f54ee96cdac601ff15284a29b1fadc46e9b732b3f738beed9ea58812fe553</citedby><cites>FETCH-LOGICAL-c1110-87d3f54ee96cdac601ff15284a29b1fadc46e9b732b3f738beed9ea58812fe553</cites><orcidid>0000-0002-2344-9586 ; 0000-0002-9127-8539</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2751,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36996330$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Awoonor-Williams, Ernest</creatorcontrib><creatorcontrib>Golosov, Andrei A</creatorcontrib><creatorcontrib>Hornak, Viktor</creatorcontrib><title>Benchmarking In Silico Tools for Cysteine p K a Prediction</title><title>Journal of chemical information and modeling</title><addtitle>J Chem Inf Model</addtitle><description>Accurate estimation of the p
's of cysteine residues in proteins could inform targeted approaches in hit discovery. The p
of a targetable cysteine residue in a disease-related protein is an important physiochemical parameter in covalent drug discovery, as it influences the fraction of nucleophilic thiolate amenable to chemical protein modification. Traditional structure-based
tools are limited in their predictive accuracy of cysteine p
's relative to other titratable residues. Additionally, there are limited comprehensive benchmark assessments for cysteine p
predictive tools. This raises the need for extensive assessment and evaluation of methods for cysteine p
prediction. Here, we report the performance of several computational p
methods, including single-structure and ensemble-based approaches, on a diverse test set of experimental cysteine p
's retrieved from the PKAD database. The dataset consisted of 16 wildtype and 10 mutant proteins with experimentally measured cysteine p
values. Our results highlight that these methods are varied in their overall predictive accuracies. Among the test set of wildtype proteins evaluated, the best method (MOE) yielded a mean absolute error of 2.3 p
units, highlighting the need for improvement of existing p
methods for accurate cysteine p
estimation. Given the limited accuracy of these methods, further development is needed before these approaches can be routinely employed to drive design decisions in early drug discovery efforts.</description><subject>Benchmarking</subject><subject>Cysteine - chemistry</subject><subject>Mutant Proteins</subject><subject>Proteins - chemistry</subject><issn>1549-9596</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kMtOwzAQRS0EoqWwZ4X8Awl2HDsxO4gKVFQCiSKxsxx7DC55yS6L_j2p2jKbmc0Z3XsQuqYkpSSjt9rEdG18mzJDxslP0JTyXCZSkM_T482lmKCLGNeEMCZFdo4mTEgpGCNTdPcAnfludfjx3RdedPjdN970eNX3TcSuD7jaxg34DvCAX7DGbwGsNxvfd5fozOkmwtVhz9DH43xVPSfL16dFdb9MDKWUJGVhmeM5gBTGaiMIdY7yrMx1JmvqtDW5AFkXLKuZK1hZA1gJmpclzRxwzmaI7P-a0McYwKkh-DHxVlGidhrUqEHtNKiDhhG52SPDb92C_QeOvdkf1TpaGw</recordid><startdate>20230410</startdate><enddate>20230410</enddate><creator>Awoonor-Williams, Ernest</creator><creator>Golosov, Andrei A</creator><creator>Hornak, Viktor</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2344-9586</orcidid><orcidid>https://orcid.org/0000-0002-9127-8539</orcidid></search><sort><creationdate>20230410</creationdate><title>Benchmarking In Silico Tools for Cysteine p K a Prediction</title><author>Awoonor-Williams, Ernest ; Golosov, Andrei A ; Hornak, Viktor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1110-87d3f54ee96cdac601ff15284a29b1fadc46e9b732b3f738beed9ea58812fe553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Benchmarking</topic><topic>Cysteine - chemistry</topic><topic>Mutant Proteins</topic><topic>Proteins - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Awoonor-Williams, Ernest</creatorcontrib><creatorcontrib>Golosov, Andrei A</creatorcontrib><creatorcontrib>Hornak, Viktor</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Awoonor-Williams, Ernest</au><au>Golosov, Andrei A</au><au>Hornak, Viktor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Benchmarking In Silico Tools for Cysteine p K a Prediction</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J Chem Inf Model</addtitle><date>2023-04-10</date><risdate>2023</risdate><volume>63</volume><issue>7</issue><spage>2170</spage><epage>2180</epage><pages>2170-2180</pages><issn>1549-9596</issn><eissn>1549-960X</eissn><abstract>Accurate estimation of the p
's of cysteine residues in proteins could inform targeted approaches in hit discovery. The p
of a targetable cysteine residue in a disease-related protein is an important physiochemical parameter in covalent drug discovery, as it influences the fraction of nucleophilic thiolate amenable to chemical protein modification. Traditional structure-based
tools are limited in their predictive accuracy of cysteine p
's relative to other titratable residues. Additionally, there are limited comprehensive benchmark assessments for cysteine p
predictive tools. This raises the need for extensive assessment and evaluation of methods for cysteine p
prediction. Here, we report the performance of several computational p
methods, including single-structure and ensemble-based approaches, on a diverse test set of experimental cysteine p
's retrieved from the PKAD database. The dataset consisted of 16 wildtype and 10 mutant proteins with experimentally measured cysteine p
values. Our results highlight that these methods are varied in their overall predictive accuracies. Among the test set of wildtype proteins evaluated, the best method (MOE) yielded a mean absolute error of 2.3 p
units, highlighting the need for improvement of existing p
methods for accurate cysteine p
estimation. Given the limited accuracy of these methods, further development is needed before these approaches can be routinely employed to drive design decisions in early drug discovery efforts.</abstract><cop>United States</cop><pmid>36996330</pmid><doi>10.1021/acs.jcim.3c00004</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2344-9586</orcidid><orcidid>https://orcid.org/0000-0002-9127-8539</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9596 |
ispartof | Journal of chemical information and modeling, 2023-04, Vol.63 (7), p.2170-2180 |
issn | 1549-9596 1549-960X |
language | eng |
recordid | cdi_crossref_primary_10_1021_acs_jcim_3c00004 |
source | MEDLINE; American Chemical Society Journals |
subjects | Benchmarking Cysteine - chemistry Mutant Proteins Proteins - chemistry |
title | Benchmarking In Silico Tools for Cysteine p K a Prediction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T08%3A12%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Benchmarking%20In%20Silico%20Tools%20for%20Cysteine%20p%20K%20a%20Prediction&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Awoonor-Williams,%20Ernest&rft.date=2023-04-10&rft.volume=63&rft.issue=7&rft.spage=2170&rft.epage=2180&rft.pages=2170-2180&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.3c00004&rft_dat=%3Cpubmed_cross%3E36996330%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/36996330&rfr_iscdi=true |