PypKa: A Flexible Python Module for Poisson-Boltzmann-Based p K a Calculations

The protonation of titratable residues has a significant impact on the structure and function of biomolecules, influencing many physicochemical and ADME properties. Thus, the importance of the estimation of protonation free energies (p values) is paramount in different scientific communities, includ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical information and modeling 2020-10, Vol.60 (10), p.4442-4448
Hauptverfasser: Reis, Pedro B P S, Vila-Viçosa, Diogo, Rocchia, Walter, Machuqueiro, Miguel
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4448
container_issue 10
container_start_page 4442
container_title Journal of chemical information and modeling
container_volume 60
creator Reis, Pedro B P S
Vila-Viçosa, Diogo
Rocchia, Walter
Machuqueiro, Miguel
description The protonation of titratable residues has a significant impact on the structure and function of biomolecules, influencing many physicochemical and ADME properties. Thus, the importance of the estimation of protonation free energies (p values) is paramount in different scientific communities, including bioinformatics, structural biology, or medicinal chemistry. Here, we introduce PypKa, a flexible tool to predict Poisson-Boltzmann/Monte Carlo-based p values of titratable sites in proteins. This application was benchmarked using a large data set of experimental values to show that our single structure-based method is fast and has a competitive performance. This is a free and open-source tool that provides a simple, reusable, and extensible Python API and CLI for p calculations with a valuable trade-off between fast and accurate predictions. PypKa allows p calculations in existing protocols with the addition of a few extra lines of code. PypKa supports CPU parallel computing on solvated proteins obtained from the PDB repository but also from MD simulations using three common naming schemes: GROMOS, AMBER, and CHARMM. The code and documentation to this open-source project is publicly available at https://github.com/mms-fcul/PypKa.
doi_str_mv 10.1021/acs.jcim.0c00718
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jcim_0c00718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>32857502</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1112-7317c9dab34573e29a255390cd929400e9bd5cc6b17d41f4e900f8fea6ccdccb3</originalsourceid><addsrcrecordid>eNo9kLFOwzAURS0EoqWwMyH_QMqzHScxW6laQC2QASS2yHl2RKokjuJGonw9qdoy3XuHc4dDyC2DKQPO7jX66QbLegoIELPkjIyZDFWgIvg6P3WpohG58n4DIISK-CUZCZ7IWAIfk7d01670A53RZWV_yryyNN1tv11DX53ph1W4jqau9N41waOrtr-1boamvTW0pSuq6VxX2Fd6W7rGX5OLQlfe3hxzQj6Xi4_5c7B-f3qZz9YBMsZ4EAsWozI6F6GMheVKcymFAjSKqxDAqtxIxChnsQlZEVoFUCSF1RGiQczFhMDhFzvnfWeLrO3KWne7jEG2V5MNarK9muyoZkDuDkjb57U1_8DJhfgD0s5g8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>PypKa: A Flexible Python Module for Poisson-Boltzmann-Based p K a Calculations</title><source>ACS Publications</source><creator>Reis, Pedro B P S ; Vila-Viçosa, Diogo ; Rocchia, Walter ; Machuqueiro, Miguel</creator><creatorcontrib>Reis, Pedro B P S ; Vila-Viçosa, Diogo ; Rocchia, Walter ; Machuqueiro, Miguel</creatorcontrib><description>The protonation of titratable residues has a significant impact on the structure and function of biomolecules, influencing many physicochemical and ADME properties. Thus, the importance of the estimation of protonation free energies (p values) is paramount in different scientific communities, including bioinformatics, structural biology, or medicinal chemistry. Here, we introduce PypKa, a flexible tool to predict Poisson-Boltzmann/Monte Carlo-based p values of titratable sites in proteins. This application was benchmarked using a large data set of experimental values to show that our single structure-based method is fast and has a competitive performance. This is a free and open-source tool that provides a simple, reusable, and extensible Python API and CLI for p calculations with a valuable trade-off between fast and accurate predictions. PypKa allows p calculations in existing protocols with the addition of a few extra lines of code. PypKa supports CPU parallel computing on solvated proteins obtained from the PDB repository but also from MD simulations using three common naming schemes: GROMOS, AMBER, and CHARMM. The code and documentation to this open-source project is publicly available at https://github.com/mms-fcul/PypKa.</description><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.0c00718</identifier><identifier>PMID: 32857502</identifier><language>eng</language><publisher>United States</publisher><ispartof>Journal of chemical information and modeling, 2020-10, Vol.60 (10), p.4442-4448</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1112-7317c9dab34573e29a255390cd929400e9bd5cc6b17d41f4e900f8fea6ccdccb3</citedby><cites>FETCH-LOGICAL-c1112-7317c9dab34573e29a255390cd929400e9bd5cc6b17d41f4e900f8fea6ccdccb3</cites><orcidid>0000-0003-2480-7151 ; 0000-0001-6923-8744 ; 0000-0001-6620-0484</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2764,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32857502$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Reis, Pedro B P S</creatorcontrib><creatorcontrib>Vila-Viçosa, Diogo</creatorcontrib><creatorcontrib>Rocchia, Walter</creatorcontrib><creatorcontrib>Machuqueiro, Miguel</creatorcontrib><title>PypKa: A Flexible Python Module for Poisson-Boltzmann-Based p K a Calculations</title><title>Journal of chemical information and modeling</title><addtitle>J Chem Inf Model</addtitle><description>The protonation of titratable residues has a significant impact on the structure and function of biomolecules, influencing many physicochemical and ADME properties. Thus, the importance of the estimation of protonation free energies (p values) is paramount in different scientific communities, including bioinformatics, structural biology, or medicinal chemistry. Here, we introduce PypKa, a flexible tool to predict Poisson-Boltzmann/Monte Carlo-based p values of titratable sites in proteins. This application was benchmarked using a large data set of experimental values to show that our single structure-based method is fast and has a competitive performance. This is a free and open-source tool that provides a simple, reusable, and extensible Python API and CLI for p calculations with a valuable trade-off between fast and accurate predictions. PypKa allows p calculations in existing protocols with the addition of a few extra lines of code. PypKa supports CPU parallel computing on solvated proteins obtained from the PDB repository but also from MD simulations using three common naming schemes: GROMOS, AMBER, and CHARMM. The code and documentation to this open-source project is publicly available at https://github.com/mms-fcul/PypKa.</description><issn>1549-9596</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kLFOwzAURS0EoqWwMyH_QMqzHScxW6laQC2QASS2yHl2RKokjuJGonw9qdoy3XuHc4dDyC2DKQPO7jX66QbLegoIELPkjIyZDFWgIvg6P3WpohG58n4DIISK-CUZCZ7IWAIfk7d01670A53RZWV_yryyNN1tv11DX53ph1W4jqau9N41waOrtr-1boamvTW0pSuq6VxX2Fd6W7rGX5OLQlfe3hxzQj6Xi4_5c7B-f3qZz9YBMsZ4EAsWozI6F6GMheVKcymFAjSKqxDAqtxIxChnsQlZEVoFUCSF1RGiQczFhMDhFzvnfWeLrO3KWne7jEG2V5MNarK9muyoZkDuDkjb57U1_8DJhfgD0s5g8w</recordid><startdate>20201026</startdate><enddate>20201026</enddate><creator>Reis, Pedro B P S</creator><creator>Vila-Viçosa, Diogo</creator><creator>Rocchia, Walter</creator><creator>Machuqueiro, Miguel</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2480-7151</orcidid><orcidid>https://orcid.org/0000-0001-6923-8744</orcidid><orcidid>https://orcid.org/0000-0001-6620-0484</orcidid></search><sort><creationdate>20201026</creationdate><title>PypKa: A Flexible Python Module for Poisson-Boltzmann-Based p K a Calculations</title><author>Reis, Pedro B P S ; Vila-Viçosa, Diogo ; Rocchia, Walter ; Machuqueiro, Miguel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1112-7317c9dab34573e29a255390cd929400e9bd5cc6b17d41f4e900f8fea6ccdccb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reis, Pedro B P S</creatorcontrib><creatorcontrib>Vila-Viçosa, Diogo</creatorcontrib><creatorcontrib>Rocchia, Walter</creatorcontrib><creatorcontrib>Machuqueiro, Miguel</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reis, Pedro B P S</au><au>Vila-Viçosa, Diogo</au><au>Rocchia, Walter</au><au>Machuqueiro, Miguel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PypKa: A Flexible Python Module for Poisson-Boltzmann-Based p K a Calculations</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J Chem Inf Model</addtitle><date>2020-10-26</date><risdate>2020</risdate><volume>60</volume><issue>10</issue><spage>4442</spage><epage>4448</epage><pages>4442-4448</pages><issn>1549-9596</issn><eissn>1549-960X</eissn><abstract>The protonation of titratable residues has a significant impact on the structure and function of biomolecules, influencing many physicochemical and ADME properties. Thus, the importance of the estimation of protonation free energies (p values) is paramount in different scientific communities, including bioinformatics, structural biology, or medicinal chemistry. Here, we introduce PypKa, a flexible tool to predict Poisson-Boltzmann/Monte Carlo-based p values of titratable sites in proteins. This application was benchmarked using a large data set of experimental values to show that our single structure-based method is fast and has a competitive performance. This is a free and open-source tool that provides a simple, reusable, and extensible Python API and CLI for p calculations with a valuable trade-off between fast and accurate predictions. PypKa allows p calculations in existing protocols with the addition of a few extra lines of code. PypKa supports CPU parallel computing on solvated proteins obtained from the PDB repository but also from MD simulations using three common naming schemes: GROMOS, AMBER, and CHARMM. The code and documentation to this open-source project is publicly available at https://github.com/mms-fcul/PypKa.</abstract><cop>United States</cop><pmid>32857502</pmid><doi>10.1021/acs.jcim.0c00718</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-2480-7151</orcidid><orcidid>https://orcid.org/0000-0001-6923-8744</orcidid><orcidid>https://orcid.org/0000-0001-6620-0484</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1549-9596
ispartof Journal of chemical information and modeling, 2020-10, Vol.60 (10), p.4442-4448
issn 1549-9596
1549-960X
language eng
recordid cdi_crossref_primary_10_1021_acs_jcim_0c00718
source ACS Publications
title PypKa: A Flexible Python Module for Poisson-Boltzmann-Based p K a Calculations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T10%3A05%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PypKa:%20A%20Flexible%20Python%20Module%20for%20Poisson-Boltzmann-Based%20p%20K%20a%20Calculations&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Reis,%20Pedro%20B%20P%20S&rft.date=2020-10-26&rft.volume=60&rft.issue=10&rft.spage=4442&rft.epage=4448&rft.pages=4442-4448&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.0c00718&rft_dat=%3Cpubmed_cross%3E32857502%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/32857502&rfr_iscdi=true