PypKa: A Flexible Python Module for Poisson-Boltzmann-Based p K a Calculations
The protonation of titratable residues has a significant impact on the structure and function of biomolecules, influencing many physicochemical and ADME properties. Thus, the importance of the estimation of protonation free energies (p values) is paramount in different scientific communities, includ...
Gespeichert in:
Veröffentlicht in: | Journal of chemical information and modeling 2020-10, Vol.60 (10), p.4442-4448 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4448 |
---|---|
container_issue | 10 |
container_start_page | 4442 |
container_title | Journal of chemical information and modeling |
container_volume | 60 |
creator | Reis, Pedro B P S Vila-Viçosa, Diogo Rocchia, Walter Machuqueiro, Miguel |
description | The protonation of titratable residues has a significant impact on the structure and function of biomolecules, influencing many physicochemical and ADME properties. Thus, the importance of the estimation of protonation free energies (p
values) is paramount in different scientific communities, including bioinformatics, structural biology, or medicinal chemistry. Here, we introduce PypKa, a flexible tool to predict Poisson-Boltzmann/Monte Carlo-based p
values of titratable sites in proteins. This application was benchmarked using a large data set of experimental values to show that our single structure-based method is fast and has a competitive performance. This is a free and open-source tool that provides a simple, reusable, and extensible Python API and CLI for p
calculations with a valuable trade-off between fast and accurate predictions. PypKa allows p
calculations in existing protocols with the addition of a few extra lines of code. PypKa supports CPU parallel computing on solvated proteins obtained from the PDB repository but also from MD simulations using three common naming schemes: GROMOS, AMBER, and CHARMM. The code and documentation to this open-source project is publicly available at https://github.com/mms-fcul/PypKa. |
doi_str_mv | 10.1021/acs.jcim.0c00718 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jcim_0c00718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>32857502</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1112-7317c9dab34573e29a255390cd929400e9bd5cc6b17d41f4e900f8fea6ccdccb3</originalsourceid><addsrcrecordid>eNo9kLFOwzAURS0EoqWwMyH_QMqzHScxW6laQC2QASS2yHl2RKokjuJGonw9qdoy3XuHc4dDyC2DKQPO7jX66QbLegoIELPkjIyZDFWgIvg6P3WpohG58n4DIISK-CUZCZ7IWAIfk7d01670A53RZWV_yryyNN1tv11DX53ph1W4jqau9N41waOrtr-1boamvTW0pSuq6VxX2Fd6W7rGX5OLQlfe3hxzQj6Xi4_5c7B-f3qZz9YBMsZ4EAsWozI6F6GMheVKcymFAjSKqxDAqtxIxChnsQlZEVoFUCSF1RGiQczFhMDhFzvnfWeLrO3KWne7jEG2V5MNarK9muyoZkDuDkjb57U1_8DJhfgD0s5g8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>PypKa: A Flexible Python Module for Poisson-Boltzmann-Based p K a Calculations</title><source>ACS Publications</source><creator>Reis, Pedro B P S ; Vila-Viçosa, Diogo ; Rocchia, Walter ; Machuqueiro, Miguel</creator><creatorcontrib>Reis, Pedro B P S ; Vila-Viçosa, Diogo ; Rocchia, Walter ; Machuqueiro, Miguel</creatorcontrib><description>The protonation of titratable residues has a significant impact on the structure and function of biomolecules, influencing many physicochemical and ADME properties. Thus, the importance of the estimation of protonation free energies (p
values) is paramount in different scientific communities, including bioinformatics, structural biology, or medicinal chemistry. Here, we introduce PypKa, a flexible tool to predict Poisson-Boltzmann/Monte Carlo-based p
values of titratable sites in proteins. This application was benchmarked using a large data set of experimental values to show that our single structure-based method is fast and has a competitive performance. This is a free and open-source tool that provides a simple, reusable, and extensible Python API and CLI for p
calculations with a valuable trade-off between fast and accurate predictions. PypKa allows p
calculations in existing protocols with the addition of a few extra lines of code. PypKa supports CPU parallel computing on solvated proteins obtained from the PDB repository but also from MD simulations using three common naming schemes: GROMOS, AMBER, and CHARMM. The code and documentation to this open-source project is publicly available at https://github.com/mms-fcul/PypKa.</description><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.0c00718</identifier><identifier>PMID: 32857502</identifier><language>eng</language><publisher>United States</publisher><ispartof>Journal of chemical information and modeling, 2020-10, Vol.60 (10), p.4442-4448</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1112-7317c9dab34573e29a255390cd929400e9bd5cc6b17d41f4e900f8fea6ccdccb3</citedby><cites>FETCH-LOGICAL-c1112-7317c9dab34573e29a255390cd929400e9bd5cc6b17d41f4e900f8fea6ccdccb3</cites><orcidid>0000-0003-2480-7151 ; 0000-0001-6923-8744 ; 0000-0001-6620-0484</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2764,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32857502$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Reis, Pedro B P S</creatorcontrib><creatorcontrib>Vila-Viçosa, Diogo</creatorcontrib><creatorcontrib>Rocchia, Walter</creatorcontrib><creatorcontrib>Machuqueiro, Miguel</creatorcontrib><title>PypKa: A Flexible Python Module for Poisson-Boltzmann-Based p K a Calculations</title><title>Journal of chemical information and modeling</title><addtitle>J Chem Inf Model</addtitle><description>The protonation of titratable residues has a significant impact on the structure and function of biomolecules, influencing many physicochemical and ADME properties. Thus, the importance of the estimation of protonation free energies (p
values) is paramount in different scientific communities, including bioinformatics, structural biology, or medicinal chemistry. Here, we introduce PypKa, a flexible tool to predict Poisson-Boltzmann/Monte Carlo-based p
values of titratable sites in proteins. This application was benchmarked using a large data set of experimental values to show that our single structure-based method is fast and has a competitive performance. This is a free and open-source tool that provides a simple, reusable, and extensible Python API and CLI for p
calculations with a valuable trade-off between fast and accurate predictions. PypKa allows p
calculations in existing protocols with the addition of a few extra lines of code. PypKa supports CPU parallel computing on solvated proteins obtained from the PDB repository but also from MD simulations using three common naming schemes: GROMOS, AMBER, and CHARMM. The code and documentation to this open-source project is publicly available at https://github.com/mms-fcul/PypKa.</description><issn>1549-9596</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kLFOwzAURS0EoqWwMyH_QMqzHScxW6laQC2QASS2yHl2RKokjuJGonw9qdoy3XuHc4dDyC2DKQPO7jX66QbLegoIELPkjIyZDFWgIvg6P3WpohG58n4DIISK-CUZCZ7IWAIfk7d01670A53RZWV_yryyNN1tv11DX53ph1W4jqau9N41waOrtr-1boamvTW0pSuq6VxX2Fd6W7rGX5OLQlfe3hxzQj6Xi4_5c7B-f3qZz9YBMsZ4EAsWozI6F6GMheVKcymFAjSKqxDAqtxIxChnsQlZEVoFUCSF1RGiQczFhMDhFzvnfWeLrO3KWne7jEG2V5MNarK9muyoZkDuDkjb57U1_8DJhfgD0s5g8w</recordid><startdate>20201026</startdate><enddate>20201026</enddate><creator>Reis, Pedro B P S</creator><creator>Vila-Viçosa, Diogo</creator><creator>Rocchia, Walter</creator><creator>Machuqueiro, Miguel</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2480-7151</orcidid><orcidid>https://orcid.org/0000-0001-6923-8744</orcidid><orcidid>https://orcid.org/0000-0001-6620-0484</orcidid></search><sort><creationdate>20201026</creationdate><title>PypKa: A Flexible Python Module for Poisson-Boltzmann-Based p K a Calculations</title><author>Reis, Pedro B P S ; Vila-Viçosa, Diogo ; Rocchia, Walter ; Machuqueiro, Miguel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1112-7317c9dab34573e29a255390cd929400e9bd5cc6b17d41f4e900f8fea6ccdccb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reis, Pedro B P S</creatorcontrib><creatorcontrib>Vila-Viçosa, Diogo</creatorcontrib><creatorcontrib>Rocchia, Walter</creatorcontrib><creatorcontrib>Machuqueiro, Miguel</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reis, Pedro B P S</au><au>Vila-Viçosa, Diogo</au><au>Rocchia, Walter</au><au>Machuqueiro, Miguel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PypKa: A Flexible Python Module for Poisson-Boltzmann-Based p K a Calculations</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J Chem Inf Model</addtitle><date>2020-10-26</date><risdate>2020</risdate><volume>60</volume><issue>10</issue><spage>4442</spage><epage>4448</epage><pages>4442-4448</pages><issn>1549-9596</issn><eissn>1549-960X</eissn><abstract>The protonation of titratable residues has a significant impact on the structure and function of biomolecules, influencing many physicochemical and ADME properties. Thus, the importance of the estimation of protonation free energies (p
values) is paramount in different scientific communities, including bioinformatics, structural biology, or medicinal chemistry. Here, we introduce PypKa, a flexible tool to predict Poisson-Boltzmann/Monte Carlo-based p
values of titratable sites in proteins. This application was benchmarked using a large data set of experimental values to show that our single structure-based method is fast and has a competitive performance. This is a free and open-source tool that provides a simple, reusable, and extensible Python API and CLI for p
calculations with a valuable trade-off between fast and accurate predictions. PypKa allows p
calculations in existing protocols with the addition of a few extra lines of code. PypKa supports CPU parallel computing on solvated proteins obtained from the PDB repository but also from MD simulations using three common naming schemes: GROMOS, AMBER, and CHARMM. The code and documentation to this open-source project is publicly available at https://github.com/mms-fcul/PypKa.</abstract><cop>United States</cop><pmid>32857502</pmid><doi>10.1021/acs.jcim.0c00718</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-2480-7151</orcidid><orcidid>https://orcid.org/0000-0001-6923-8744</orcidid><orcidid>https://orcid.org/0000-0001-6620-0484</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9596 |
ispartof | Journal of chemical information and modeling, 2020-10, Vol.60 (10), p.4442-4448 |
issn | 1549-9596 1549-960X |
language | eng |
recordid | cdi_crossref_primary_10_1021_acs_jcim_0c00718 |
source | ACS Publications |
title | PypKa: A Flexible Python Module for Poisson-Boltzmann-Based p K a Calculations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T10%3A05%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PypKa:%20A%20Flexible%20Python%20Module%20for%20Poisson-Boltzmann-Based%20p%20K%20a%20Calculations&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Reis,%20Pedro%20B%20P%20S&rft.date=2020-10-26&rft.volume=60&rft.issue=10&rft.spage=4442&rft.epage=4448&rft.pages=4442-4448&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.0c00718&rft_dat=%3Cpubmed_cross%3E32857502%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/32857502&rfr_iscdi=true |