Predicting p K a Using a Combination of Semi-Empirical Quantum Mechanics and Radial Basis Function Methods

The acid dissociation constant (p ) has an important influence on molecular properties crucial to compound development in synthesis, formulation, and optimization of absorption, distribution, metabolism, and excretion properties. We will present a method that combines quantum mechanical calculations...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical information and modeling 2020-06, Vol.60 (6), p.2989-2997
Hauptverfasser: Hunt, Peter, Hosseini-Gerami, Layla, Chrien, Tomas, Plante, Jeffrey, Ponting, David J, Segall, Matthew
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2997
container_issue 6
container_start_page 2989
container_title Journal of chemical information and modeling
container_volume 60
creator Hunt, Peter
Hosseini-Gerami, Layla
Chrien, Tomas
Plante, Jeffrey
Ponting, David J
Segall, Matthew
description The acid dissociation constant (p ) has an important influence on molecular properties crucial to compound development in synthesis, formulation, and optimization of absorption, distribution, metabolism, and excretion properties. We will present a method that combines quantum mechanical calculations, at a semi-empirical level of theory, with machine learning to accurately predict p for a diverse range of mono- and polyprotic compounds. The resulting model has been tested on two external data sets, one specifically used to test p prediction methods (SAMPL6) and the second covering known drugs containing basic functionalities. Both sets were predicted with excellent accuracy (root-mean-square errors of 0.7-1.0 log units), comparable to other methodologies using a much higher level of theory and computational cost.
doi_str_mv 10.1021/acs.jcim.0c00105
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jcim_0c00105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>32357002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1112-3d2cb4c525a96f3f2d817d97af21f26338a6bea66bfdae59e03555434bae65703</originalsourceid><addsrcrecordid>eNo9kEtPwkAUhSdGI4juXZn5A63z6AzMUgmoEeKTxF1zOw8ZQqdNp1347y0Cru5Jbr6TnA-ha0pSShi9BR3TjfZlSjQhlIgTNKQiU4mS5Ov0mIWSA3QR44YQzpVk52jAGRdjQtgQbV4ba7xuffjGNX7GgFdxlwFPq7LwAVpfBVw5_GFLn8zK2jdewxa_dRDarsRLq9cQvI4YgsHvYHz_vIfoI553Qf_RS9uuKxMv0ZmDbbRXhztCq_nsc_qYLF4enqZ3i0RTSlnCDdNFpgUToKTjjpkJHRs1BseoY5LzCcjCgpSFM2CFsoQLITKeFWBlv4qPENn36qaKsbEurxtfQvOTU5LvtOW9tnynLT9o65GbPVJ3RWnNP3D0xH8BmL1qvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Predicting p K a Using a Combination of Semi-Empirical Quantum Mechanics and Radial Basis Function Methods</title><source>ACS Publications</source><creator>Hunt, Peter ; Hosseini-Gerami, Layla ; Chrien, Tomas ; Plante, Jeffrey ; Ponting, David J ; Segall, Matthew</creator><creatorcontrib>Hunt, Peter ; Hosseini-Gerami, Layla ; Chrien, Tomas ; Plante, Jeffrey ; Ponting, David J ; Segall, Matthew</creatorcontrib><description>The acid dissociation constant (p ) has an important influence on molecular properties crucial to compound development in synthesis, formulation, and optimization of absorption, distribution, metabolism, and excretion properties. We will present a method that combines quantum mechanical calculations, at a semi-empirical level of theory, with machine learning to accurately predict p for a diverse range of mono- and polyprotic compounds. The resulting model has been tested on two external data sets, one specifically used to test p prediction methods (SAMPL6) and the second covering known drugs containing basic functionalities. Both sets were predicted with excellent accuracy (root-mean-square errors of 0.7-1.0 log units), comparable to other methodologies using a much higher level of theory and computational cost.</description><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.0c00105</identifier><identifier>PMID: 32357002</identifier><language>eng</language><publisher>United States</publisher><ispartof>Journal of chemical information and modeling, 2020-06, Vol.60 (6), p.2989-2997</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1112-3d2cb4c525a96f3f2d817d97af21f26338a6bea66bfdae59e03555434bae65703</citedby><cites>FETCH-LOGICAL-c1112-3d2cb4c525a96f3f2d817d97af21f26338a6bea66bfdae59e03555434bae65703</cites><orcidid>0000-0003-0380-1893 ; 0000-0001-6840-2629 ; 0000-0002-2105-6535 ; 0000-0001-6606-1920</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2752,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32357002$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hunt, Peter</creatorcontrib><creatorcontrib>Hosseini-Gerami, Layla</creatorcontrib><creatorcontrib>Chrien, Tomas</creatorcontrib><creatorcontrib>Plante, Jeffrey</creatorcontrib><creatorcontrib>Ponting, David J</creatorcontrib><creatorcontrib>Segall, Matthew</creatorcontrib><title>Predicting p K a Using a Combination of Semi-Empirical Quantum Mechanics and Radial Basis Function Methods</title><title>Journal of chemical information and modeling</title><addtitle>J Chem Inf Model</addtitle><description>The acid dissociation constant (p ) has an important influence on molecular properties crucial to compound development in synthesis, formulation, and optimization of absorption, distribution, metabolism, and excretion properties. We will present a method that combines quantum mechanical calculations, at a semi-empirical level of theory, with machine learning to accurately predict p for a diverse range of mono- and polyprotic compounds. The resulting model has been tested on two external data sets, one specifically used to test p prediction methods (SAMPL6) and the second covering known drugs containing basic functionalities. Both sets were predicted with excellent accuracy (root-mean-square errors of 0.7-1.0 log units), comparable to other methodologies using a much higher level of theory and computational cost.</description><issn>1549-9596</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kEtPwkAUhSdGI4juXZn5A63z6AzMUgmoEeKTxF1zOw8ZQqdNp1347y0Cru5Jbr6TnA-ha0pSShi9BR3TjfZlSjQhlIgTNKQiU4mS5Ov0mIWSA3QR44YQzpVk52jAGRdjQtgQbV4ba7xuffjGNX7GgFdxlwFPq7LwAVpfBVw5_GFLn8zK2jdewxa_dRDarsRLq9cQvI4YgsHvYHz_vIfoI553Qf_RS9uuKxMv0ZmDbbRXhztCq_nsc_qYLF4enqZ3i0RTSlnCDdNFpgUToKTjjpkJHRs1BseoY5LzCcjCgpSFM2CFsoQLITKeFWBlv4qPENn36qaKsbEurxtfQvOTU5LvtOW9tnynLT9o65GbPVJ3RWnNP3D0xH8BmL1qvw</recordid><startdate>20200622</startdate><enddate>20200622</enddate><creator>Hunt, Peter</creator><creator>Hosseini-Gerami, Layla</creator><creator>Chrien, Tomas</creator><creator>Plante, Jeffrey</creator><creator>Ponting, David J</creator><creator>Segall, Matthew</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0380-1893</orcidid><orcidid>https://orcid.org/0000-0001-6840-2629</orcidid><orcidid>https://orcid.org/0000-0002-2105-6535</orcidid><orcidid>https://orcid.org/0000-0001-6606-1920</orcidid></search><sort><creationdate>20200622</creationdate><title>Predicting p K a Using a Combination of Semi-Empirical Quantum Mechanics and Radial Basis Function Methods</title><author>Hunt, Peter ; Hosseini-Gerami, Layla ; Chrien, Tomas ; Plante, Jeffrey ; Ponting, David J ; Segall, Matthew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1112-3d2cb4c525a96f3f2d817d97af21f26338a6bea66bfdae59e03555434bae65703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hunt, Peter</creatorcontrib><creatorcontrib>Hosseini-Gerami, Layla</creatorcontrib><creatorcontrib>Chrien, Tomas</creatorcontrib><creatorcontrib>Plante, Jeffrey</creatorcontrib><creatorcontrib>Ponting, David J</creatorcontrib><creatorcontrib>Segall, Matthew</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hunt, Peter</au><au>Hosseini-Gerami, Layla</au><au>Chrien, Tomas</au><au>Plante, Jeffrey</au><au>Ponting, David J</au><au>Segall, Matthew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting p K a Using a Combination of Semi-Empirical Quantum Mechanics and Radial Basis Function Methods</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J Chem Inf Model</addtitle><date>2020-06-22</date><risdate>2020</risdate><volume>60</volume><issue>6</issue><spage>2989</spage><epage>2997</epage><pages>2989-2997</pages><issn>1549-9596</issn><eissn>1549-960X</eissn><abstract>The acid dissociation constant (p ) has an important influence on molecular properties crucial to compound development in synthesis, formulation, and optimization of absorption, distribution, metabolism, and excretion properties. We will present a method that combines quantum mechanical calculations, at a semi-empirical level of theory, with machine learning to accurately predict p for a diverse range of mono- and polyprotic compounds. The resulting model has been tested on two external data sets, one specifically used to test p prediction methods (SAMPL6) and the second covering known drugs containing basic functionalities. Both sets were predicted with excellent accuracy (root-mean-square errors of 0.7-1.0 log units), comparable to other methodologies using a much higher level of theory and computational cost.</abstract><cop>United States</cop><pmid>32357002</pmid><doi>10.1021/acs.jcim.0c00105</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0380-1893</orcidid><orcidid>https://orcid.org/0000-0001-6840-2629</orcidid><orcidid>https://orcid.org/0000-0002-2105-6535</orcidid><orcidid>https://orcid.org/0000-0001-6606-1920</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1549-9596
ispartof Journal of chemical information and modeling, 2020-06, Vol.60 (6), p.2989-2997
issn 1549-9596
1549-960X
language eng
recordid cdi_crossref_primary_10_1021_acs_jcim_0c00105
source ACS Publications
title Predicting p K a Using a Combination of Semi-Empirical Quantum Mechanics and Radial Basis Function Methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T08%3A12%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20p%20K%20a%20Using%20a%20Combination%20of%20Semi-Empirical%20Quantum%20Mechanics%20and%20Radial%20Basis%20Function%20Methods&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Hunt,%20Peter&rft.date=2020-06-22&rft.volume=60&rft.issue=6&rft.spage=2989&rft.epage=2997&rft.pages=2989-2997&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.0c00105&rft_dat=%3Cpubmed_cross%3E32357002%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/32357002&rfr_iscdi=true