Scalable Cultivation of Engineered Cyanobacteria for Squalene Production from Industrial Flue Gas in a Closed Photobioreactor

Economically feasible photosynthetic cultivation of microalgal and cyanobacterial strains is crucial for the biological conversion of CO2 and potential CO2 mitigation to challenge global warming. To overcome the economic barriers, the production of value-added chemicals was desired by compensating f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural and food chemistry 2020-09, Vol.68 (37), p.10050-10055
Hauptverfasser: Choi, Sun Young, Sim, Sang Jun, Ko, Sung Cheon, Son, Jigyeong, Lee, Jeong Seop, Lee, Hyun Jeong, Chang, Won Seok, Woo, Han Min
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10055
container_issue 37
container_start_page 10050
container_title Journal of agricultural and food chemistry
container_volume 68
creator Choi, Sun Young
Sim, Sang Jun
Ko, Sung Cheon
Son, Jigyeong
Lee, Jeong Seop
Lee, Hyun Jeong
Chang, Won Seok
Woo, Han Min
description Economically feasible photosynthetic cultivation of microalgal and cyanobacterial strains is crucial for the biological conversion of CO2 and potential CO2 mitigation to challenge global warming. To overcome the economic barriers, the production of value-added chemicals was desired by compensating for the overall processing cost. Here, we engineered cyanobacteria for photosynthetic squalene production and cultivated them in a scalable photobioreactor using industrial flue gas. First, an inducer-free gene expression system was developed for the cyanobacteria to lower production const. Then, the recombinant cyanobacteria were cultivated in a closed photobioreactor (100 L) using flue gas (5% CO2) as the sole carbon source under natural sunlight as the only energy source. Seasonal light intensities and temperatures were analyzed along with cyanobacterial cell growth and squalene production in August and October 2019. As a result, the effective irradiation hours were the most critical factor for the large-scale cultivation of cyanobacteria. Thus, an automated photobioprocess system will be developed based on the regional light sources.
doi_str_mv 10.1021/acs.jafc.0c03133
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jafc_0c03133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c362619856</sourcerecordid><originalsourceid>FETCH-LOGICAL-a402t-7dbbe965b0987a12f237cb706a3452094ef23879a58453a37cbb07dcd31262333</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EoqWwZ4X8AaT4ESfuEkVtqYREpcI6GjsOpHLjYidIXfDvuA_YsRpp5p4rzUHolpIxJYw-gA7jNdR6TDThlPMzNKSCkURQKs_RkMRMIkVGB-gqhDUhRIqcXKIBZ1JQmbIh-l5psKCswUVvu-YLusa12NV42r43rTHeVLjYQesU6M74BnDtPF599mBNa_DSu6rXB6b2boMXbdWHLsYsntne4DkE3LQYcGFdiFXLD9c51ThvYp3z1-iiBhvMzWmO0Nts-lo8Jc8v80Xx-JxASliX5JVSZpIJRSYyB8pqxnOtcpIBT-O7k9TEjcwnIGQqOOyPiuSVrjhlGeOcjxA59mrvQvCmLre-2YDflZSUe5NlNFnuTZYnkxG5OyLbXm1M9Qf8qouB-2PggLret_GD__t-ADjogJo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Scalable Cultivation of Engineered Cyanobacteria for Squalene Production from Industrial Flue Gas in a Closed Photobioreactor</title><source>MEDLINE</source><source>ACS Journals: American Chemical Society Web Editions</source><creator>Choi, Sun Young ; Sim, Sang Jun ; Ko, Sung Cheon ; Son, Jigyeong ; Lee, Jeong Seop ; Lee, Hyun Jeong ; Chang, Won Seok ; Woo, Han Min</creator><creatorcontrib>Choi, Sun Young ; Sim, Sang Jun ; Ko, Sung Cheon ; Son, Jigyeong ; Lee, Jeong Seop ; Lee, Hyun Jeong ; Chang, Won Seok ; Woo, Han Min</creatorcontrib><description>Economically feasible photosynthetic cultivation of microalgal and cyanobacterial strains is crucial for the biological conversion of CO2 and potential CO2 mitigation to challenge global warming. To overcome the economic barriers, the production of value-added chemicals was desired by compensating for the overall processing cost. Here, we engineered cyanobacteria for photosynthetic squalene production and cultivated them in a scalable photobioreactor using industrial flue gas. First, an inducer-free gene expression system was developed for the cyanobacteria to lower production const. Then, the recombinant cyanobacteria were cultivated in a closed photobioreactor (100 L) using flue gas (5% CO2) as the sole carbon source under natural sunlight as the only energy source. Seasonal light intensities and temperatures were analyzed along with cyanobacterial cell growth and squalene production in August and October 2019. As a result, the effective irradiation hours were the most critical factor for the large-scale cultivation of cyanobacteria. Thus, an automated photobioprocess system will be developed based on the regional light sources.</description><identifier>ISSN: 0021-8561</identifier><identifier>EISSN: 1520-5118</identifier><identifier>DOI: 10.1021/acs.jafc.0c03133</identifier><identifier>PMID: 32851842</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Biofuels and Biobased Materials ; Carbon Dioxide - metabolism ; Gases - metabolism ; Light ; Metabolic Engineering ; Microalgae - genetics ; Microalgae - growth &amp; development ; Microalgae - metabolism ; Microalgae - radiation effects ; Photobioreactors - microbiology ; Photosynthesis ; Squalene - metabolism ; Synechococcus - genetics ; Synechococcus - growth &amp; development ; Synechococcus - metabolism ; Synechococcus - radiation effects</subject><ispartof>Journal of agricultural and food chemistry, 2020-09, Vol.68 (37), p.10050-10055</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a402t-7dbbe965b0987a12f237cb706a3452094ef23879a58453a37cbb07dcd31262333</citedby><cites>FETCH-LOGICAL-a402t-7dbbe965b0987a12f237cb706a3452094ef23879a58453a37cbb07dcd31262333</cites><orcidid>0000-0003-1045-0286 ; 0000-0002-8797-0477</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jafc.0c03133$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jafc.0c03133$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32851842$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Choi, Sun Young</creatorcontrib><creatorcontrib>Sim, Sang Jun</creatorcontrib><creatorcontrib>Ko, Sung Cheon</creatorcontrib><creatorcontrib>Son, Jigyeong</creatorcontrib><creatorcontrib>Lee, Jeong Seop</creatorcontrib><creatorcontrib>Lee, Hyun Jeong</creatorcontrib><creatorcontrib>Chang, Won Seok</creatorcontrib><creatorcontrib>Woo, Han Min</creatorcontrib><title>Scalable Cultivation of Engineered Cyanobacteria for Squalene Production from Industrial Flue Gas in a Closed Photobioreactor</title><title>Journal of agricultural and food chemistry</title><addtitle>J. Agric. Food Chem</addtitle><description>Economically feasible photosynthetic cultivation of microalgal and cyanobacterial strains is crucial for the biological conversion of CO2 and potential CO2 mitigation to challenge global warming. To overcome the economic barriers, the production of value-added chemicals was desired by compensating for the overall processing cost. Here, we engineered cyanobacteria for photosynthetic squalene production and cultivated them in a scalable photobioreactor using industrial flue gas. First, an inducer-free gene expression system was developed for the cyanobacteria to lower production const. Then, the recombinant cyanobacteria were cultivated in a closed photobioreactor (100 L) using flue gas (5% CO2) as the sole carbon source under natural sunlight as the only energy source. Seasonal light intensities and temperatures were analyzed along with cyanobacterial cell growth and squalene production in August and October 2019. As a result, the effective irradiation hours were the most critical factor for the large-scale cultivation of cyanobacteria. Thus, an automated photobioprocess system will be developed based on the regional light sources.</description><subject>Biofuels and Biobased Materials</subject><subject>Carbon Dioxide - metabolism</subject><subject>Gases - metabolism</subject><subject>Light</subject><subject>Metabolic Engineering</subject><subject>Microalgae - genetics</subject><subject>Microalgae - growth &amp; development</subject><subject>Microalgae - metabolism</subject><subject>Microalgae - radiation effects</subject><subject>Photobioreactors - microbiology</subject><subject>Photosynthesis</subject><subject>Squalene - metabolism</subject><subject>Synechococcus - genetics</subject><subject>Synechococcus - growth &amp; development</subject><subject>Synechococcus - metabolism</subject><subject>Synechococcus - radiation effects</subject><issn>0021-8561</issn><issn>1520-5118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kMtOwzAQRS0EoqWwZ4X8AaT4ESfuEkVtqYREpcI6GjsOpHLjYidIXfDvuA_YsRpp5p4rzUHolpIxJYw-gA7jNdR6TDThlPMzNKSCkURQKs_RkMRMIkVGB-gqhDUhRIqcXKIBZ1JQmbIh-l5psKCswUVvu-YLusa12NV42r43rTHeVLjYQesU6M74BnDtPF599mBNa_DSu6rXB6b2boMXbdWHLsYsntne4DkE3LQYcGFdiFXLD9c51ThvYp3z1-iiBhvMzWmO0Nts-lo8Jc8v80Xx-JxASliX5JVSZpIJRSYyB8pqxnOtcpIBT-O7k9TEjcwnIGQqOOyPiuSVrjhlGeOcjxA59mrvQvCmLre-2YDflZSUe5NlNFnuTZYnkxG5OyLbXm1M9Qf8qouB-2PggLret_GD__t-ADjogJo</recordid><startdate>20200916</startdate><enddate>20200916</enddate><creator>Choi, Sun Young</creator><creator>Sim, Sang Jun</creator><creator>Ko, Sung Cheon</creator><creator>Son, Jigyeong</creator><creator>Lee, Jeong Seop</creator><creator>Lee, Hyun Jeong</creator><creator>Chang, Won Seok</creator><creator>Woo, Han Min</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1045-0286</orcidid><orcidid>https://orcid.org/0000-0002-8797-0477</orcidid></search><sort><creationdate>20200916</creationdate><title>Scalable Cultivation of Engineered Cyanobacteria for Squalene Production from Industrial Flue Gas in a Closed Photobioreactor</title><author>Choi, Sun Young ; Sim, Sang Jun ; Ko, Sung Cheon ; Son, Jigyeong ; Lee, Jeong Seop ; Lee, Hyun Jeong ; Chang, Won Seok ; Woo, Han Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a402t-7dbbe965b0987a12f237cb706a3452094ef23879a58453a37cbb07dcd31262333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biofuels and Biobased Materials</topic><topic>Carbon Dioxide - metabolism</topic><topic>Gases - metabolism</topic><topic>Light</topic><topic>Metabolic Engineering</topic><topic>Microalgae - genetics</topic><topic>Microalgae - growth &amp; development</topic><topic>Microalgae - metabolism</topic><topic>Microalgae - radiation effects</topic><topic>Photobioreactors - microbiology</topic><topic>Photosynthesis</topic><topic>Squalene - metabolism</topic><topic>Synechococcus - genetics</topic><topic>Synechococcus - growth &amp; development</topic><topic>Synechococcus - metabolism</topic><topic>Synechococcus - radiation effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Sun Young</creatorcontrib><creatorcontrib>Sim, Sang Jun</creatorcontrib><creatorcontrib>Ko, Sung Cheon</creatorcontrib><creatorcontrib>Son, Jigyeong</creatorcontrib><creatorcontrib>Lee, Jeong Seop</creatorcontrib><creatorcontrib>Lee, Hyun Jeong</creatorcontrib><creatorcontrib>Chang, Won Seok</creatorcontrib><creatorcontrib>Woo, Han Min</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Journal of agricultural and food chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Sun Young</au><au>Sim, Sang Jun</au><au>Ko, Sung Cheon</au><au>Son, Jigyeong</au><au>Lee, Jeong Seop</au><au>Lee, Hyun Jeong</au><au>Chang, Won Seok</au><au>Woo, Han Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scalable Cultivation of Engineered Cyanobacteria for Squalene Production from Industrial Flue Gas in a Closed Photobioreactor</atitle><jtitle>Journal of agricultural and food chemistry</jtitle><addtitle>J. Agric. Food Chem</addtitle><date>2020-09-16</date><risdate>2020</risdate><volume>68</volume><issue>37</issue><spage>10050</spage><epage>10055</epage><pages>10050-10055</pages><issn>0021-8561</issn><eissn>1520-5118</eissn><abstract>Economically feasible photosynthetic cultivation of microalgal and cyanobacterial strains is crucial for the biological conversion of CO2 and potential CO2 mitigation to challenge global warming. To overcome the economic barriers, the production of value-added chemicals was desired by compensating for the overall processing cost. Here, we engineered cyanobacteria for photosynthetic squalene production and cultivated them in a scalable photobioreactor using industrial flue gas. First, an inducer-free gene expression system was developed for the cyanobacteria to lower production const. Then, the recombinant cyanobacteria were cultivated in a closed photobioreactor (100 L) using flue gas (5% CO2) as the sole carbon source under natural sunlight as the only energy source. Seasonal light intensities and temperatures were analyzed along with cyanobacterial cell growth and squalene production in August and October 2019. As a result, the effective irradiation hours were the most critical factor for the large-scale cultivation of cyanobacteria. Thus, an automated photobioprocess system will be developed based on the regional light sources.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32851842</pmid><doi>10.1021/acs.jafc.0c03133</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-1045-0286</orcidid><orcidid>https://orcid.org/0000-0002-8797-0477</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8561
ispartof Journal of agricultural and food chemistry, 2020-09, Vol.68 (37), p.10050-10055
issn 0021-8561
1520-5118
language eng
recordid cdi_crossref_primary_10_1021_acs_jafc_0c03133
source MEDLINE; ACS Journals: American Chemical Society Web Editions
subjects Biofuels and Biobased Materials
Carbon Dioxide - metabolism
Gases - metabolism
Light
Metabolic Engineering
Microalgae - genetics
Microalgae - growth & development
Microalgae - metabolism
Microalgae - radiation effects
Photobioreactors - microbiology
Photosynthesis
Squalene - metabolism
Synechococcus - genetics
Synechococcus - growth & development
Synechococcus - metabolism
Synechococcus - radiation effects
title Scalable Cultivation of Engineered Cyanobacteria for Squalene Production from Industrial Flue Gas in a Closed Photobioreactor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T20%3A12%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scalable%20Cultivation%20of%20Engineered%20Cyanobacteria%20for%20Squalene%20Production%20from%20Industrial%20Flue%20Gas%20in%20a%20Closed%20Photobioreactor&rft.jtitle=Journal%20of%20agricultural%20and%20food%20chemistry&rft.au=Choi,%20Sun%20Young&rft.date=2020-09-16&rft.volume=68&rft.issue=37&rft.spage=10050&rft.epage=10055&rft.pages=10050-10055&rft.issn=0021-8561&rft.eissn=1520-5118&rft_id=info:doi/10.1021/acs.jafc.0c03133&rft_dat=%3Cacs_cross%3Ec362619856%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/32851842&rfr_iscdi=true