Scalable Cultivation of Engineered Cyanobacteria for Squalene Production from Industrial Flue Gas in a Closed Photobioreactor
Economically feasible photosynthetic cultivation of microalgal and cyanobacterial strains is crucial for the biological conversion of CO2 and potential CO2 mitigation to challenge global warming. To overcome the economic barriers, the production of value-added chemicals was desired by compensating f...
Gespeichert in:
Veröffentlicht in: | Journal of agricultural and food chemistry 2020-09, Vol.68 (37), p.10050-10055 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10055 |
---|---|
container_issue | 37 |
container_start_page | 10050 |
container_title | Journal of agricultural and food chemistry |
container_volume | 68 |
creator | Choi, Sun Young Sim, Sang Jun Ko, Sung Cheon Son, Jigyeong Lee, Jeong Seop Lee, Hyun Jeong Chang, Won Seok Woo, Han Min |
description | Economically feasible photosynthetic cultivation of microalgal and cyanobacterial strains is crucial for the biological conversion of CO2 and potential CO2 mitigation to challenge global warming. To overcome the economic barriers, the production of value-added chemicals was desired by compensating for the overall processing cost. Here, we engineered cyanobacteria for photosynthetic squalene production and cultivated them in a scalable photobioreactor using industrial flue gas. First, an inducer-free gene expression system was developed for the cyanobacteria to lower production const. Then, the recombinant cyanobacteria were cultivated in a closed photobioreactor (100 L) using flue gas (5% CO2) as the sole carbon source under natural sunlight as the only energy source. Seasonal light intensities and temperatures were analyzed along with cyanobacterial cell growth and squalene production in August and October 2019. As a result, the effective irradiation hours were the most critical factor for the large-scale cultivation of cyanobacteria. Thus, an automated photobioprocess system will be developed based on the regional light sources. |
doi_str_mv | 10.1021/acs.jafc.0c03133 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_jafc_0c03133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c362619856</sourcerecordid><originalsourceid>FETCH-LOGICAL-a402t-7dbbe965b0987a12f237cb706a3452094ef23879a58453a37cbb07dcd31262333</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EoqWwZ4X8AaT4ESfuEkVtqYREpcI6GjsOpHLjYidIXfDvuA_YsRpp5p4rzUHolpIxJYw-gA7jNdR6TDThlPMzNKSCkURQKs_RkMRMIkVGB-gqhDUhRIqcXKIBZ1JQmbIh-l5psKCswUVvu-YLusa12NV42r43rTHeVLjYQesU6M74BnDtPF599mBNa_DSu6rXB6b2boMXbdWHLsYsntne4DkE3LQYcGFdiFXLD9c51ThvYp3z1-iiBhvMzWmO0Nts-lo8Jc8v80Xx-JxASliX5JVSZpIJRSYyB8pqxnOtcpIBT-O7k9TEjcwnIGQqOOyPiuSVrjhlGeOcjxA59mrvQvCmLre-2YDflZSUe5NlNFnuTZYnkxG5OyLbXm1M9Qf8qouB-2PggLret_GD__t-ADjogJo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Scalable Cultivation of Engineered Cyanobacteria for Squalene Production from Industrial Flue Gas in a Closed Photobioreactor</title><source>MEDLINE</source><source>ACS Journals: American Chemical Society Web Editions</source><creator>Choi, Sun Young ; Sim, Sang Jun ; Ko, Sung Cheon ; Son, Jigyeong ; Lee, Jeong Seop ; Lee, Hyun Jeong ; Chang, Won Seok ; Woo, Han Min</creator><creatorcontrib>Choi, Sun Young ; Sim, Sang Jun ; Ko, Sung Cheon ; Son, Jigyeong ; Lee, Jeong Seop ; Lee, Hyun Jeong ; Chang, Won Seok ; Woo, Han Min</creatorcontrib><description>Economically feasible photosynthetic cultivation of microalgal and cyanobacterial strains is crucial for the biological conversion of CO2 and potential CO2 mitigation to challenge global warming. To overcome the economic barriers, the production of value-added chemicals was desired by compensating for the overall processing cost. Here, we engineered cyanobacteria for photosynthetic squalene production and cultivated them in a scalable photobioreactor using industrial flue gas. First, an inducer-free gene expression system was developed for the cyanobacteria to lower production const. Then, the recombinant cyanobacteria were cultivated in a closed photobioreactor (100 L) using flue gas (5% CO2) as the sole carbon source under natural sunlight as the only energy source. Seasonal light intensities and temperatures were analyzed along with cyanobacterial cell growth and squalene production in August and October 2019. As a result, the effective irradiation hours were the most critical factor for the large-scale cultivation of cyanobacteria. Thus, an automated photobioprocess system will be developed based on the regional light sources.</description><identifier>ISSN: 0021-8561</identifier><identifier>EISSN: 1520-5118</identifier><identifier>DOI: 10.1021/acs.jafc.0c03133</identifier><identifier>PMID: 32851842</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Biofuels and Biobased Materials ; Carbon Dioxide - metabolism ; Gases - metabolism ; Light ; Metabolic Engineering ; Microalgae - genetics ; Microalgae - growth & development ; Microalgae - metabolism ; Microalgae - radiation effects ; Photobioreactors - microbiology ; Photosynthesis ; Squalene - metabolism ; Synechococcus - genetics ; Synechococcus - growth & development ; Synechococcus - metabolism ; Synechococcus - radiation effects</subject><ispartof>Journal of agricultural and food chemistry, 2020-09, Vol.68 (37), p.10050-10055</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a402t-7dbbe965b0987a12f237cb706a3452094ef23879a58453a37cbb07dcd31262333</citedby><cites>FETCH-LOGICAL-a402t-7dbbe965b0987a12f237cb706a3452094ef23879a58453a37cbb07dcd31262333</cites><orcidid>0000-0003-1045-0286 ; 0000-0002-8797-0477</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jafc.0c03133$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jafc.0c03133$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32851842$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Choi, Sun Young</creatorcontrib><creatorcontrib>Sim, Sang Jun</creatorcontrib><creatorcontrib>Ko, Sung Cheon</creatorcontrib><creatorcontrib>Son, Jigyeong</creatorcontrib><creatorcontrib>Lee, Jeong Seop</creatorcontrib><creatorcontrib>Lee, Hyun Jeong</creatorcontrib><creatorcontrib>Chang, Won Seok</creatorcontrib><creatorcontrib>Woo, Han Min</creatorcontrib><title>Scalable Cultivation of Engineered Cyanobacteria for Squalene Production from Industrial Flue Gas in a Closed Photobioreactor</title><title>Journal of agricultural and food chemistry</title><addtitle>J. Agric. Food Chem</addtitle><description>Economically feasible photosynthetic cultivation of microalgal and cyanobacterial strains is crucial for the biological conversion of CO2 and potential CO2 mitigation to challenge global warming. To overcome the economic barriers, the production of value-added chemicals was desired by compensating for the overall processing cost. Here, we engineered cyanobacteria for photosynthetic squalene production and cultivated them in a scalable photobioreactor using industrial flue gas. First, an inducer-free gene expression system was developed for the cyanobacteria to lower production const. Then, the recombinant cyanobacteria were cultivated in a closed photobioreactor (100 L) using flue gas (5% CO2) as the sole carbon source under natural sunlight as the only energy source. Seasonal light intensities and temperatures were analyzed along with cyanobacterial cell growth and squalene production in August and October 2019. As a result, the effective irradiation hours were the most critical factor for the large-scale cultivation of cyanobacteria. Thus, an automated photobioprocess system will be developed based on the regional light sources.</description><subject>Biofuels and Biobased Materials</subject><subject>Carbon Dioxide - metabolism</subject><subject>Gases - metabolism</subject><subject>Light</subject><subject>Metabolic Engineering</subject><subject>Microalgae - genetics</subject><subject>Microalgae - growth & development</subject><subject>Microalgae - metabolism</subject><subject>Microalgae - radiation effects</subject><subject>Photobioreactors - microbiology</subject><subject>Photosynthesis</subject><subject>Squalene - metabolism</subject><subject>Synechococcus - genetics</subject><subject>Synechococcus - growth & development</subject><subject>Synechococcus - metabolism</subject><subject>Synechococcus - radiation effects</subject><issn>0021-8561</issn><issn>1520-5118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kMtOwzAQRS0EoqWwZ4X8AaT4ESfuEkVtqYREpcI6GjsOpHLjYidIXfDvuA_YsRpp5p4rzUHolpIxJYw-gA7jNdR6TDThlPMzNKSCkURQKs_RkMRMIkVGB-gqhDUhRIqcXKIBZ1JQmbIh-l5psKCswUVvu-YLusa12NV42r43rTHeVLjYQesU6M74BnDtPF599mBNa_DSu6rXB6b2boMXbdWHLsYsntne4DkE3LQYcGFdiFXLD9c51ThvYp3z1-iiBhvMzWmO0Nts-lo8Jc8v80Xx-JxASliX5JVSZpIJRSYyB8pqxnOtcpIBT-O7k9TEjcwnIGQqOOyPiuSVrjhlGeOcjxA59mrvQvCmLre-2YDflZSUe5NlNFnuTZYnkxG5OyLbXm1M9Qf8qouB-2PggLret_GD__t-ADjogJo</recordid><startdate>20200916</startdate><enddate>20200916</enddate><creator>Choi, Sun Young</creator><creator>Sim, Sang Jun</creator><creator>Ko, Sung Cheon</creator><creator>Son, Jigyeong</creator><creator>Lee, Jeong Seop</creator><creator>Lee, Hyun Jeong</creator><creator>Chang, Won Seok</creator><creator>Woo, Han Min</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1045-0286</orcidid><orcidid>https://orcid.org/0000-0002-8797-0477</orcidid></search><sort><creationdate>20200916</creationdate><title>Scalable Cultivation of Engineered Cyanobacteria for Squalene Production from Industrial Flue Gas in a Closed Photobioreactor</title><author>Choi, Sun Young ; Sim, Sang Jun ; Ko, Sung Cheon ; Son, Jigyeong ; Lee, Jeong Seop ; Lee, Hyun Jeong ; Chang, Won Seok ; Woo, Han Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a402t-7dbbe965b0987a12f237cb706a3452094ef23879a58453a37cbb07dcd31262333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biofuels and Biobased Materials</topic><topic>Carbon Dioxide - metabolism</topic><topic>Gases - metabolism</topic><topic>Light</topic><topic>Metabolic Engineering</topic><topic>Microalgae - genetics</topic><topic>Microalgae - growth & development</topic><topic>Microalgae - metabolism</topic><topic>Microalgae - radiation effects</topic><topic>Photobioreactors - microbiology</topic><topic>Photosynthesis</topic><topic>Squalene - metabolism</topic><topic>Synechococcus - genetics</topic><topic>Synechococcus - growth & development</topic><topic>Synechococcus - metabolism</topic><topic>Synechococcus - radiation effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Sun Young</creatorcontrib><creatorcontrib>Sim, Sang Jun</creatorcontrib><creatorcontrib>Ko, Sung Cheon</creatorcontrib><creatorcontrib>Son, Jigyeong</creatorcontrib><creatorcontrib>Lee, Jeong Seop</creatorcontrib><creatorcontrib>Lee, Hyun Jeong</creatorcontrib><creatorcontrib>Chang, Won Seok</creatorcontrib><creatorcontrib>Woo, Han Min</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Journal of agricultural and food chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Sun Young</au><au>Sim, Sang Jun</au><au>Ko, Sung Cheon</au><au>Son, Jigyeong</au><au>Lee, Jeong Seop</au><au>Lee, Hyun Jeong</au><au>Chang, Won Seok</au><au>Woo, Han Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scalable Cultivation of Engineered Cyanobacteria for Squalene Production from Industrial Flue Gas in a Closed Photobioreactor</atitle><jtitle>Journal of agricultural and food chemistry</jtitle><addtitle>J. Agric. Food Chem</addtitle><date>2020-09-16</date><risdate>2020</risdate><volume>68</volume><issue>37</issue><spage>10050</spage><epage>10055</epage><pages>10050-10055</pages><issn>0021-8561</issn><eissn>1520-5118</eissn><abstract>Economically feasible photosynthetic cultivation of microalgal and cyanobacterial strains is crucial for the biological conversion of CO2 and potential CO2 mitigation to challenge global warming. To overcome the economic barriers, the production of value-added chemicals was desired by compensating for the overall processing cost. Here, we engineered cyanobacteria for photosynthetic squalene production and cultivated them in a scalable photobioreactor using industrial flue gas. First, an inducer-free gene expression system was developed for the cyanobacteria to lower production const. Then, the recombinant cyanobacteria were cultivated in a closed photobioreactor (100 L) using flue gas (5% CO2) as the sole carbon source under natural sunlight as the only energy source. Seasonal light intensities and temperatures were analyzed along with cyanobacterial cell growth and squalene production in August and October 2019. As a result, the effective irradiation hours were the most critical factor for the large-scale cultivation of cyanobacteria. Thus, an automated photobioprocess system will be developed based on the regional light sources.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32851842</pmid><doi>10.1021/acs.jafc.0c03133</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-1045-0286</orcidid><orcidid>https://orcid.org/0000-0002-8797-0477</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8561 |
ispartof | Journal of agricultural and food chemistry, 2020-09, Vol.68 (37), p.10050-10055 |
issn | 0021-8561 1520-5118 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acs_jafc_0c03133 |
source | MEDLINE; ACS Journals: American Chemical Society Web Editions |
subjects | Biofuels and Biobased Materials Carbon Dioxide - metabolism Gases - metabolism Light Metabolic Engineering Microalgae - genetics Microalgae - growth & development Microalgae - metabolism Microalgae - radiation effects Photobioreactors - microbiology Photosynthesis Squalene - metabolism Synechococcus - genetics Synechococcus - growth & development Synechococcus - metabolism Synechococcus - radiation effects |
title | Scalable Cultivation of Engineered Cyanobacteria for Squalene Production from Industrial Flue Gas in a Closed Photobioreactor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T20%3A12%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scalable%20Cultivation%20of%20Engineered%20Cyanobacteria%20for%20Squalene%20Production%20from%20Industrial%20Flue%20Gas%20in%20a%20Closed%20Photobioreactor&rft.jtitle=Journal%20of%20agricultural%20and%20food%20chemistry&rft.au=Choi,%20Sun%20Young&rft.date=2020-09-16&rft.volume=68&rft.issue=37&rft.spage=10050&rft.epage=10055&rft.pages=10050-10055&rft.issn=0021-8561&rft.eissn=1520-5118&rft_id=info:doi/10.1021/acs.jafc.0c03133&rft_dat=%3Cacs_cross%3Ec362619856%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/32851842&rfr_iscdi=true |