Acoustic Method for Determination of the Thermal Properties of Nanofluids

This study determines the thermophysical properties of nanofluids using ultrasonic techniques. Using an acoustic test cell, fitted with 4 MHz high-temperature transducers, measurements of the speed of sound in an aqueous dispersion of alumina nanoparticles (Al2O3, 99.9%, spherical, d p = 50 nm) are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2019-10, Vol.58 (42), p.19719-19731
Hauptverfasser: Mahmoud, Bashar, Rice, Hugh P, Mortimer, Lee, Fairweather, Michael, Peakall, Jeffrey, Harbottle, David
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19731
container_issue 42
container_start_page 19719
container_title Industrial & engineering chemistry research
container_volume 58
creator Mahmoud, Bashar
Rice, Hugh P
Mortimer, Lee
Fairweather, Michael
Peakall, Jeffrey
Harbottle, David
description This study determines the thermophysical properties of nanofluids using ultrasonic techniques. Using an acoustic test cell, fitted with 4 MHz high-temperature transducers, measurements of the speed of sound in an aqueous dispersion of alumina nanoparticles (Al2O3, 99.9%, spherical, d p = 50 nm) are made at volume fractions from 1 to 5 vol % over the temperature range of 20–90 °C. The observed relationships between the measured parameters and speed of sound variation are presented. Available theoretical approaches are reviewed and applied to the data of the study. The speed of sound data together with measurements of density and predictions of thermal conductivity, derived from Lagrangian particle tracking (LPT) simulations, is used to determine the ratio of specific heats of nanofluids using a modified version of the Bridgman equation. The results demonstrate the effectiveness of the measurement technique, with outcomes elucidating the dependence of the speed of sound on temperature and particle concentration, and hence the influence of these parameters on the thermophysical properties of nanofluids. Using the speed of sound approach and LPT simulations, the predicted thermal values, which have an estimated accuracy of 5–10%, show good agreement with theoretical and experimental results available in the literature for similar operating conditions. This research forms the basis for the use of novel acoustic techniques for online, in situ measurement of nanofluids, and their potential applications in solar thermal power systems.
doi_str_mv 10.1021/acs.iecr.9b02983
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_iecr_9b02983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a999843242</sourcerecordid><originalsourceid>FETCH-LOGICAL-a425t-eb25f750f110ea6b1e4cddde08bd52ce9aca06995862f32ea745f41c376e431e3</originalsourceid><addsrcrecordid>eNp1kEtPwzAQhC0EEqVw5-gfQMra8abOsSqvSuVxKOfIcdaqqzaubPfAvycRvXIaaWdmNfoYuxcwEyDFo7Fp5snGWd2CrHV5wSYCJRQICi_ZBLTWBWqN1-wmpR0AICo1YauFDaeUveXvlLeh4y5E_kSZ4sH3JvvQ8-B43hLfbIeb2fOvGI4Us6c0Oh-mD25_8l26ZVfO7BPdnXXKvl-eN8u3Yv35ulou1oVREnNBrUQ3R3BCAJmqFaRs13UEuu1QWqqNNVDVNepKulKSmSt0SthyXpEqBZVTBn9_bQwpRXLNMfqDiT-NgGZE0QwomhFFc0YxVB7-KqOzC6fYDwP_j_8CBSZjjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Acoustic Method for Determination of the Thermal Properties of Nanofluids</title><source>American Chemical Society Journals</source><creator>Mahmoud, Bashar ; Rice, Hugh P ; Mortimer, Lee ; Fairweather, Michael ; Peakall, Jeffrey ; Harbottle, David</creator><creatorcontrib>Mahmoud, Bashar ; Rice, Hugh P ; Mortimer, Lee ; Fairweather, Michael ; Peakall, Jeffrey ; Harbottle, David</creatorcontrib><description>This study determines the thermophysical properties of nanofluids using ultrasonic techniques. Using an acoustic test cell, fitted with 4 MHz high-temperature transducers, measurements of the speed of sound in an aqueous dispersion of alumina nanoparticles (Al2O3, 99.9%, spherical, d p = 50 nm) are made at volume fractions from 1 to 5 vol % over the temperature range of 20–90 °C. The observed relationships between the measured parameters and speed of sound variation are presented. Available theoretical approaches are reviewed and applied to the data of the study. The speed of sound data together with measurements of density and predictions of thermal conductivity, derived from Lagrangian particle tracking (LPT) simulations, is used to determine the ratio of specific heats of nanofluids using a modified version of the Bridgman equation. The results demonstrate the effectiveness of the measurement technique, with outcomes elucidating the dependence of the speed of sound on temperature and particle concentration, and hence the influence of these parameters on the thermophysical properties of nanofluids. Using the speed of sound approach and LPT simulations, the predicted thermal values, which have an estimated accuracy of 5–10%, show good agreement with theoretical and experimental results available in the literature for similar operating conditions. This research forms the basis for the use of novel acoustic techniques for online, in situ measurement of nanofluids, and their potential applications in solar thermal power systems.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/acs.iecr.9b02983</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Industrial &amp; engineering chemistry research, 2019-10, Vol.58 (42), p.19719-19731</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a425t-eb25f750f110ea6b1e4cddde08bd52ce9aca06995862f32ea745f41c376e431e3</citedby><cites>FETCH-LOGICAL-a425t-eb25f750f110ea6b1e4cddde08bd52ce9aca06995862f32ea745f41c376e431e3</cites><orcidid>0000-0002-7647-0119 ; 0000-0002-0169-517X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.iecr.9b02983$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.iecr.9b02983$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids></links><search><creatorcontrib>Mahmoud, Bashar</creatorcontrib><creatorcontrib>Rice, Hugh P</creatorcontrib><creatorcontrib>Mortimer, Lee</creatorcontrib><creatorcontrib>Fairweather, Michael</creatorcontrib><creatorcontrib>Peakall, Jeffrey</creatorcontrib><creatorcontrib>Harbottle, David</creatorcontrib><title>Acoustic Method for Determination of the Thermal Properties of Nanofluids</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>This study determines the thermophysical properties of nanofluids using ultrasonic techniques. Using an acoustic test cell, fitted with 4 MHz high-temperature transducers, measurements of the speed of sound in an aqueous dispersion of alumina nanoparticles (Al2O3, 99.9%, spherical, d p = 50 nm) are made at volume fractions from 1 to 5 vol % over the temperature range of 20–90 °C. The observed relationships between the measured parameters and speed of sound variation are presented. Available theoretical approaches are reviewed and applied to the data of the study. The speed of sound data together with measurements of density and predictions of thermal conductivity, derived from Lagrangian particle tracking (LPT) simulations, is used to determine the ratio of specific heats of nanofluids using a modified version of the Bridgman equation. The results demonstrate the effectiveness of the measurement technique, with outcomes elucidating the dependence of the speed of sound on temperature and particle concentration, and hence the influence of these parameters on the thermophysical properties of nanofluids. Using the speed of sound approach and LPT simulations, the predicted thermal values, which have an estimated accuracy of 5–10%, show good agreement with theoretical and experimental results available in the literature for similar operating conditions. This research forms the basis for the use of novel acoustic techniques for online, in situ measurement of nanofluids, and their potential applications in solar thermal power systems.</description><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEtPwzAQhC0EEqVw5-gfQMra8abOsSqvSuVxKOfIcdaqqzaubPfAvycRvXIaaWdmNfoYuxcwEyDFo7Fp5snGWd2CrHV5wSYCJRQICi_ZBLTWBWqN1-wmpR0AICo1YauFDaeUveXvlLeh4y5E_kSZ4sH3JvvQ8-B43hLfbIeb2fOvGI4Us6c0Oh-mD25_8l26ZVfO7BPdnXXKvl-eN8u3Yv35ulou1oVREnNBrUQ3R3BCAJmqFaRs13UEuu1QWqqNNVDVNepKulKSmSt0SthyXpEqBZVTBn9_bQwpRXLNMfqDiT-NgGZE0QwomhFFc0YxVB7-KqOzC6fYDwP_j_8CBSZjjw</recordid><startdate>20191023</startdate><enddate>20191023</enddate><creator>Mahmoud, Bashar</creator><creator>Rice, Hugh P</creator><creator>Mortimer, Lee</creator><creator>Fairweather, Michael</creator><creator>Peakall, Jeffrey</creator><creator>Harbottle, David</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7647-0119</orcidid><orcidid>https://orcid.org/0000-0002-0169-517X</orcidid></search><sort><creationdate>20191023</creationdate><title>Acoustic Method for Determination of the Thermal Properties of Nanofluids</title><author>Mahmoud, Bashar ; Rice, Hugh P ; Mortimer, Lee ; Fairweather, Michael ; Peakall, Jeffrey ; Harbottle, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a425t-eb25f750f110ea6b1e4cddde08bd52ce9aca06995862f32ea745f41c376e431e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahmoud, Bashar</creatorcontrib><creatorcontrib>Rice, Hugh P</creatorcontrib><creatorcontrib>Mortimer, Lee</creatorcontrib><creatorcontrib>Fairweather, Michael</creatorcontrib><creatorcontrib>Peakall, Jeffrey</creatorcontrib><creatorcontrib>Harbottle, David</creatorcontrib><collection>CrossRef</collection><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahmoud, Bashar</au><au>Rice, Hugh P</au><au>Mortimer, Lee</au><au>Fairweather, Michael</au><au>Peakall, Jeffrey</au><au>Harbottle, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acoustic Method for Determination of the Thermal Properties of Nanofluids</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2019-10-23</date><risdate>2019</risdate><volume>58</volume><issue>42</issue><spage>19719</spage><epage>19731</epage><pages>19719-19731</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><abstract>This study determines the thermophysical properties of nanofluids using ultrasonic techniques. Using an acoustic test cell, fitted with 4 MHz high-temperature transducers, measurements of the speed of sound in an aqueous dispersion of alumina nanoparticles (Al2O3, 99.9%, spherical, d p = 50 nm) are made at volume fractions from 1 to 5 vol % over the temperature range of 20–90 °C. The observed relationships between the measured parameters and speed of sound variation are presented. Available theoretical approaches are reviewed and applied to the data of the study. The speed of sound data together with measurements of density and predictions of thermal conductivity, derived from Lagrangian particle tracking (LPT) simulations, is used to determine the ratio of specific heats of nanofluids using a modified version of the Bridgman equation. The results demonstrate the effectiveness of the measurement technique, with outcomes elucidating the dependence of the speed of sound on temperature and particle concentration, and hence the influence of these parameters on the thermophysical properties of nanofluids. Using the speed of sound approach and LPT simulations, the predicted thermal values, which have an estimated accuracy of 5–10%, show good agreement with theoretical and experimental results available in the literature for similar operating conditions. This research forms the basis for the use of novel acoustic techniques for online, in situ measurement of nanofluids, and their potential applications in solar thermal power systems.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.iecr.9b02983</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7647-0119</orcidid><orcidid>https://orcid.org/0000-0002-0169-517X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 2019-10, Vol.58 (42), p.19719-19731
issn 0888-5885
1520-5045
language eng
recordid cdi_crossref_primary_10_1021_acs_iecr_9b02983
source American Chemical Society Journals
title Acoustic Method for Determination of the Thermal Properties of Nanofluids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T22%3A55%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acoustic%20Method%20for%20Determination%20of%20the%20Thermal%20Properties%20of%20Nanofluids&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Mahmoud,%20Bashar&rft.date=2019-10-23&rft.volume=58&rft.issue=42&rft.spage=19719&rft.epage=19731&rft.pages=19719-19731&rft.issn=0888-5885&rft.eissn=1520-5045&rft_id=info:doi/10.1021/acs.iecr.9b02983&rft_dat=%3Cacs_cross%3Ea999843242%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true