110th Anniversary: Unleashing the Full Potential of Quinones for High Performance Aqueous Organic Flow Battery

Aqueous organic flow batteries (AOFBs) are promising energy storage solutions to counteract the intermittent and fluctuating nature of renewable energy. However, we have limited options of electrolyte chemistry and we discarded many organic compounds because of their sluggish electrochemical kinetic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2019-03, Vol.58 (10), p.3994-3999
Hauptverfasser: Sun, Pan, Liu, Yahua, Li, Yuanyuan, Shehzad, Muhammad A, Liu, Yazhi, Zuo, Peipei, Chen, Qianru, Yang, Zhengjin, Xu, Tongwen
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3999
container_issue 10
container_start_page 3994
container_title Industrial & engineering chemistry research
container_volume 58
creator Sun, Pan
Liu, Yahua
Li, Yuanyuan
Shehzad, Muhammad A
Liu, Yazhi
Zuo, Peipei
Chen, Qianru
Yang, Zhengjin
Xu, Tongwen
description Aqueous organic flow batteries (AOFBs) are promising energy storage solutions to counteract the intermittent and fluctuating nature of renewable energy. However, we have limited options of electrolyte chemistry and we discarded many organic compounds because of their sluggish electrochemical kinetics, which would compromise the power capability of an AOFB. Here, exemplified by 2,5-dihydroxy-3,6-dimethyl-1,4-benzoquinone (DMBQ), we present two approaches including engineering the molecular structure and utilizing an inexpensive catalyst to enhance the electrochemical kinetics of benzoquinones with the ultimate purpose of diminishing the electron transfer barrier thereby increasing the power capability of the AOFB. We show that, by exploiting these strategies, the electron transfer resistance could be reduced by 48.1%, or 55.8%, respectively, thereby leading to a 49.4% or 60.7% increase in the peak power density of a flowing cell. We believe our strategy could be extended to the full family of quinones and that it benefits further exploration of quinone-based high performance AOFBs.
doi_str_mv 10.1021/acs.iecr.8b06391
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_iecr_8b06391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a610208663</sourcerecordid><originalsourceid>FETCH-LOGICAL-a350t-d287e1a0d7f0dc5fd5fd40c9e6ad3eea294ca0824052a52228a1c9e48474190b3</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKt3j_kBbp1kkzbrrRZrhUIr2POSZme7KdtEk12l_94UexUGZuDNG958hNwzGDHg7FGbOLJowkhtYZwX7IIMmOSQSRDykgxAKZVJpeQ1uYlxDwBSCjEgjjHoGjp1zn5jiDocn-jGtahjY92Odg3Sed-2dO07dJ3VLfU1fe-t8w4jrX2gC7tr6BpDmg_aGaTTrx59H-kq7LSzhs5b_0OfdddhON6Sq1q3Ee_OfUg285eP2SJbrl7fZtNlpnMJXVZxNUGmoZrUUBlZV6kEmALHusoRNS-E0aC4AMm15JwrzZIqlJgIVsA2HxL4u2uCjzFgXX4Ge0jflQzKE68y8SpPvMozr2R5-LOclL3vg0sB_1__BZnEb_U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>110th Anniversary: Unleashing the Full Potential of Quinones for High Performance Aqueous Organic Flow Battery</title><source>American Chemical Society Journals</source><creator>Sun, Pan ; Liu, Yahua ; Li, Yuanyuan ; Shehzad, Muhammad A ; Liu, Yazhi ; Zuo, Peipei ; Chen, Qianru ; Yang, Zhengjin ; Xu, Tongwen</creator><creatorcontrib>Sun, Pan ; Liu, Yahua ; Li, Yuanyuan ; Shehzad, Muhammad A ; Liu, Yazhi ; Zuo, Peipei ; Chen, Qianru ; Yang, Zhengjin ; Xu, Tongwen</creatorcontrib><description>Aqueous organic flow batteries (AOFBs) are promising energy storage solutions to counteract the intermittent and fluctuating nature of renewable energy. However, we have limited options of electrolyte chemistry and we discarded many organic compounds because of their sluggish electrochemical kinetics, which would compromise the power capability of an AOFB. Here, exemplified by 2,5-dihydroxy-3,6-dimethyl-1,4-benzoquinone (DMBQ), we present two approaches including engineering the molecular structure and utilizing an inexpensive catalyst to enhance the electrochemical kinetics of benzoquinones with the ultimate purpose of diminishing the electron transfer barrier thereby increasing the power capability of the AOFB. We show that, by exploiting these strategies, the electron transfer resistance could be reduced by 48.1%, or 55.8%, respectively, thereby leading to a 49.4% or 60.7% increase in the peak power density of a flowing cell. We believe our strategy could be extended to the full family of quinones and that it benefits further exploration of quinone-based high performance AOFBs.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/acs.iecr.8b06391</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Industrial &amp; engineering chemistry research, 2019-03, Vol.58 (10), p.3994-3999</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a350t-d287e1a0d7f0dc5fd5fd40c9e6ad3eea294ca0824052a52228a1c9e48474190b3</citedby><cites>FETCH-LOGICAL-a350t-d287e1a0d7f0dc5fd5fd40c9e6ad3eea294ca0824052a52228a1c9e48474190b3</cites><orcidid>0000-0002-0722-7908 ; 0000-0002-7820-9889 ; 0000-0001-6000-1791</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.iecr.8b06391$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.iecr.8b06391$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Sun, Pan</creatorcontrib><creatorcontrib>Liu, Yahua</creatorcontrib><creatorcontrib>Li, Yuanyuan</creatorcontrib><creatorcontrib>Shehzad, Muhammad A</creatorcontrib><creatorcontrib>Liu, Yazhi</creatorcontrib><creatorcontrib>Zuo, Peipei</creatorcontrib><creatorcontrib>Chen, Qianru</creatorcontrib><creatorcontrib>Yang, Zhengjin</creatorcontrib><creatorcontrib>Xu, Tongwen</creatorcontrib><title>110th Anniversary: Unleashing the Full Potential of Quinones for High Performance Aqueous Organic Flow Battery</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>Aqueous organic flow batteries (AOFBs) are promising energy storage solutions to counteract the intermittent and fluctuating nature of renewable energy. However, we have limited options of electrolyte chemistry and we discarded many organic compounds because of their sluggish electrochemical kinetics, which would compromise the power capability of an AOFB. Here, exemplified by 2,5-dihydroxy-3,6-dimethyl-1,4-benzoquinone (DMBQ), we present two approaches including engineering the molecular structure and utilizing an inexpensive catalyst to enhance the electrochemical kinetics of benzoquinones with the ultimate purpose of diminishing the electron transfer barrier thereby increasing the power capability of the AOFB. We show that, by exploiting these strategies, the electron transfer resistance could be reduced by 48.1%, or 55.8%, respectively, thereby leading to a 49.4% or 60.7% increase in the peak power density of a flowing cell. We believe our strategy could be extended to the full family of quinones and that it benefits further exploration of quinone-based high performance AOFBs.</description><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLAzEQhYMoWKt3j_kBbp1kkzbrrRZrhUIr2POSZme7KdtEk12l_94UexUGZuDNG958hNwzGDHg7FGbOLJowkhtYZwX7IIMmOSQSRDykgxAKZVJpeQ1uYlxDwBSCjEgjjHoGjp1zn5jiDocn-jGtahjY92Odg3Sed-2dO07dJ3VLfU1fe-t8w4jrX2gC7tr6BpDmg_aGaTTrx59H-kq7LSzhs5b_0OfdddhON6Sq1q3Ee_OfUg285eP2SJbrl7fZtNlpnMJXVZxNUGmoZrUUBlZV6kEmALHusoRNS-E0aC4AMm15JwrzZIqlJgIVsA2HxL4u2uCjzFgXX4Ge0jflQzKE68y8SpPvMozr2R5-LOclL3vg0sB_1__BZnEb_U</recordid><startdate>20190313</startdate><enddate>20190313</enddate><creator>Sun, Pan</creator><creator>Liu, Yahua</creator><creator>Li, Yuanyuan</creator><creator>Shehzad, Muhammad A</creator><creator>Liu, Yazhi</creator><creator>Zuo, Peipei</creator><creator>Chen, Qianru</creator><creator>Yang, Zhengjin</creator><creator>Xu, Tongwen</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0722-7908</orcidid><orcidid>https://orcid.org/0000-0002-7820-9889</orcidid><orcidid>https://orcid.org/0000-0001-6000-1791</orcidid></search><sort><creationdate>20190313</creationdate><title>110th Anniversary: Unleashing the Full Potential of Quinones for High Performance Aqueous Organic Flow Battery</title><author>Sun, Pan ; Liu, Yahua ; Li, Yuanyuan ; Shehzad, Muhammad A ; Liu, Yazhi ; Zuo, Peipei ; Chen, Qianru ; Yang, Zhengjin ; Xu, Tongwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a350t-d287e1a0d7f0dc5fd5fd40c9e6ad3eea294ca0824052a52228a1c9e48474190b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Pan</creatorcontrib><creatorcontrib>Liu, Yahua</creatorcontrib><creatorcontrib>Li, Yuanyuan</creatorcontrib><creatorcontrib>Shehzad, Muhammad A</creatorcontrib><creatorcontrib>Liu, Yazhi</creatorcontrib><creatorcontrib>Zuo, Peipei</creatorcontrib><creatorcontrib>Chen, Qianru</creatorcontrib><creatorcontrib>Yang, Zhengjin</creatorcontrib><creatorcontrib>Xu, Tongwen</creatorcontrib><collection>CrossRef</collection><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Pan</au><au>Liu, Yahua</au><au>Li, Yuanyuan</au><au>Shehzad, Muhammad A</au><au>Liu, Yazhi</au><au>Zuo, Peipei</au><au>Chen, Qianru</au><au>Yang, Zhengjin</au><au>Xu, Tongwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>110th Anniversary: Unleashing the Full Potential of Quinones for High Performance Aqueous Organic Flow Battery</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2019-03-13</date><risdate>2019</risdate><volume>58</volume><issue>10</issue><spage>3994</spage><epage>3999</epage><pages>3994-3999</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><abstract>Aqueous organic flow batteries (AOFBs) are promising energy storage solutions to counteract the intermittent and fluctuating nature of renewable energy. However, we have limited options of electrolyte chemistry and we discarded many organic compounds because of their sluggish electrochemical kinetics, which would compromise the power capability of an AOFB. Here, exemplified by 2,5-dihydroxy-3,6-dimethyl-1,4-benzoquinone (DMBQ), we present two approaches including engineering the molecular structure and utilizing an inexpensive catalyst to enhance the electrochemical kinetics of benzoquinones with the ultimate purpose of diminishing the electron transfer barrier thereby increasing the power capability of the AOFB. We show that, by exploiting these strategies, the electron transfer resistance could be reduced by 48.1%, or 55.8%, respectively, thereby leading to a 49.4% or 60.7% increase in the peak power density of a flowing cell. We believe our strategy could be extended to the full family of quinones and that it benefits further exploration of quinone-based high performance AOFBs.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.iecr.8b06391</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-0722-7908</orcidid><orcidid>https://orcid.org/0000-0002-7820-9889</orcidid><orcidid>https://orcid.org/0000-0001-6000-1791</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 2019-03, Vol.58 (10), p.3994-3999
issn 0888-5885
1520-5045
language eng
recordid cdi_crossref_primary_10_1021_acs_iecr_8b06391
source American Chemical Society Journals
title 110th Anniversary: Unleashing the Full Potential of Quinones for High Performance Aqueous Organic Flow Battery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A23%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=110th%20Anniversary:%20Unleashing%20the%20Full%20Potential%20of%20Quinones%20for%20High%20Performance%20Aqueous%20Organic%20Flow%20Battery&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Sun,%20Pan&rft.date=2019-03-13&rft.volume=58&rft.issue=10&rft.spage=3994&rft.epage=3999&rft.pages=3994-3999&rft.issn=0888-5885&rft.eissn=1520-5045&rft_id=info:doi/10.1021/acs.iecr.8b06391&rft_dat=%3Cacs_cross%3Ea610208663%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true