Decomposition of Potassium Hydrogen Carbonate: Thermochemistry, Kinetics, and Textural Changes in Solids

To determine unbiased rates of the decomposition of KHCO3, slowly increasing- and constant-temperature TGA methods were employed with small, finely ground samples. Such reaction provides a novel, porous, and highly reactive sorbent for noxious and/or malodorous gases. The bicarbonate commences decom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2019-02, Vol.58 (8), p.2868-2881
Hauptverfasser: Hartman, Miloslav, Svoboda, Karel, Čech, Bohumír, Pohořelý, Michael, Šyc, Michal
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2881
container_issue 8
container_start_page 2868
container_title Industrial & engineering chemistry research
container_volume 58
creator Hartman, Miloslav
Svoboda, Karel
Čech, Bohumír
Pohořelý, Michael
Šyc, Michal
description To determine unbiased rates of the decomposition of KHCO3, slowly increasing- and constant-temperature TGA methods were employed with small, finely ground samples. Such reaction provides a novel, porous, and highly reactive sorbent for noxious and/or malodorous gases. The bicarbonate commences decomposing at 364 K, and the maximum rate of reaction, attained at 421.9 K, amounts to 5.73 × 10–4 1/s. Taking advantage of the Schlömilch function, an Arrhenius-type relationship is developed by an integral method: the activation energy is as large as 141.3 kJ/mol and the order of reaction amounts to 1.145. While the pore volume made by calcination (0.2309 cm3/g) is not affected by temperature at 403–503 K, the mean pore diameter and the grain size augment with increasing temperature. The diagram presented makes it possible to conveniently predict the conditions to attain near-complete conversion of the bicarbonate and minimize undesirable sintering of the nascent carbonate.
doi_str_mv 10.1021/acs.iecr.8b06151
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_iecr_8b06151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c266838259</sourcerecordid><originalsourceid>FETCH-LOGICAL-a383t-506664d007d94451626dd76a5cbf254c1f4c0383bc5d7da671b325c56baa1d8d3</originalsourceid><addsrcrecordid>eNp1kM1LwzAYxoMoOKd3j_kD1pm0edPoTerHxIGC81zeJumasSYj6cD993bMq6fn8Hzw8CPklrM5Zzm_Q53mzuo4Vw2THPgZmXDIWQZMwDmZMKVUBkrBJblKacMYAxBiQronq0O_C8kNLngaWvoZBkzJ7Xu6OJgY1tbTCmMTPA72ga46G_ugO9u7NMTDjL47bwen04yiN3Rlf4Z9xC2tOvRrm6jz9CtsnUnX5KLFbbI3fzol3y_Pq2qRLT9e36rHZYaFKobxrpRSGMZKcy8EcJlLY0qJoJs2B6F5KzQbk40GUxqUJW-KHDTIBpEbZYopYaddHUNK0bb1Lroe46HmrD6SqkdS9ZFU_UdqrMxOlaOzCfvox4P_x38BU0puQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Decomposition of Potassium Hydrogen Carbonate: Thermochemistry, Kinetics, and Textural Changes in Solids</title><source>American Chemical Society Journals</source><creator>Hartman, Miloslav ; Svoboda, Karel ; Čech, Bohumír ; Pohořelý, Michael ; Šyc, Michal</creator><creatorcontrib>Hartman, Miloslav ; Svoboda, Karel ; Čech, Bohumír ; Pohořelý, Michael ; Šyc, Michal</creatorcontrib><description>To determine unbiased rates of the decomposition of KHCO3, slowly increasing- and constant-temperature TGA methods were employed with small, finely ground samples. Such reaction provides a novel, porous, and highly reactive sorbent for noxious and/or malodorous gases. The bicarbonate commences decomposing at 364 K, and the maximum rate of reaction, attained at 421.9 K, amounts to 5.73 × 10–4 1/s. Taking advantage of the Schlömilch function, an Arrhenius-type relationship is developed by an integral method: the activation energy is as large as 141.3 kJ/mol and the order of reaction amounts to 1.145. While the pore volume made by calcination (0.2309 cm3/g) is not affected by temperature at 403–503 K, the mean pore diameter and the grain size augment with increasing temperature. The diagram presented makes it possible to conveniently predict the conditions to attain near-complete conversion of the bicarbonate and minimize undesirable sintering of the nascent carbonate.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/acs.iecr.8b06151</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Industrial &amp; engineering chemistry research, 2019-02, Vol.58 (8), p.2868-2881</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a383t-506664d007d94451626dd76a5cbf254c1f4c0383bc5d7da671b325c56baa1d8d3</citedby><cites>FETCH-LOGICAL-a383t-506664d007d94451626dd76a5cbf254c1f4c0383bc5d7da671b325c56baa1d8d3</cites><orcidid>0000-0001-9189-1344</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.iecr.8b06151$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.iecr.8b06151$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Hartman, Miloslav</creatorcontrib><creatorcontrib>Svoboda, Karel</creatorcontrib><creatorcontrib>Čech, Bohumír</creatorcontrib><creatorcontrib>Pohořelý, Michael</creatorcontrib><creatorcontrib>Šyc, Michal</creatorcontrib><title>Decomposition of Potassium Hydrogen Carbonate: Thermochemistry, Kinetics, and Textural Changes in Solids</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>To determine unbiased rates of the decomposition of KHCO3, slowly increasing- and constant-temperature TGA methods were employed with small, finely ground samples. Such reaction provides a novel, porous, and highly reactive sorbent for noxious and/or malodorous gases. The bicarbonate commences decomposing at 364 K, and the maximum rate of reaction, attained at 421.9 K, amounts to 5.73 × 10–4 1/s. Taking advantage of the Schlömilch function, an Arrhenius-type relationship is developed by an integral method: the activation energy is as large as 141.3 kJ/mol and the order of reaction amounts to 1.145. While the pore volume made by calcination (0.2309 cm3/g) is not affected by temperature at 403–503 K, the mean pore diameter and the grain size augment with increasing temperature. The diagram presented makes it possible to conveniently predict the conditions to attain near-complete conversion of the bicarbonate and minimize undesirable sintering of the nascent carbonate.</description><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LwzAYxoMoOKd3j_kD1pm0edPoTerHxIGC81zeJumasSYj6cD993bMq6fn8Hzw8CPklrM5Zzm_Q53mzuo4Vw2THPgZmXDIWQZMwDmZMKVUBkrBJblKacMYAxBiQronq0O_C8kNLngaWvoZBkzJ7Xu6OJgY1tbTCmMTPA72ga46G_ugO9u7NMTDjL47bwen04yiN3Rlf4Z9xC2tOvRrm6jz9CtsnUnX5KLFbbI3fzol3y_Pq2qRLT9e36rHZYaFKobxrpRSGMZKcy8EcJlLY0qJoJs2B6F5KzQbk40GUxqUJW-KHDTIBpEbZYopYaddHUNK0bb1Lroe46HmrD6SqkdS9ZFU_UdqrMxOlaOzCfvox4P_x38BU0puQQ</recordid><startdate>20190227</startdate><enddate>20190227</enddate><creator>Hartman, Miloslav</creator><creator>Svoboda, Karel</creator><creator>Čech, Bohumír</creator><creator>Pohořelý, Michael</creator><creator>Šyc, Michal</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9189-1344</orcidid></search><sort><creationdate>20190227</creationdate><title>Decomposition of Potassium Hydrogen Carbonate: Thermochemistry, Kinetics, and Textural Changes in Solids</title><author>Hartman, Miloslav ; Svoboda, Karel ; Čech, Bohumír ; Pohořelý, Michael ; Šyc, Michal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a383t-506664d007d94451626dd76a5cbf254c1f4c0383bc5d7da671b325c56baa1d8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hartman, Miloslav</creatorcontrib><creatorcontrib>Svoboda, Karel</creatorcontrib><creatorcontrib>Čech, Bohumír</creatorcontrib><creatorcontrib>Pohořelý, Michael</creatorcontrib><creatorcontrib>Šyc, Michal</creatorcontrib><collection>CrossRef</collection><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hartman, Miloslav</au><au>Svoboda, Karel</au><au>Čech, Bohumír</au><au>Pohořelý, Michael</au><au>Šyc, Michal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decomposition of Potassium Hydrogen Carbonate: Thermochemistry, Kinetics, and Textural Changes in Solids</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2019-02-27</date><risdate>2019</risdate><volume>58</volume><issue>8</issue><spage>2868</spage><epage>2881</epage><pages>2868-2881</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><abstract>To determine unbiased rates of the decomposition of KHCO3, slowly increasing- and constant-temperature TGA methods were employed with small, finely ground samples. Such reaction provides a novel, porous, and highly reactive sorbent for noxious and/or malodorous gases. The bicarbonate commences decomposing at 364 K, and the maximum rate of reaction, attained at 421.9 K, amounts to 5.73 × 10–4 1/s. Taking advantage of the Schlömilch function, an Arrhenius-type relationship is developed by an integral method: the activation energy is as large as 141.3 kJ/mol and the order of reaction amounts to 1.145. While the pore volume made by calcination (0.2309 cm3/g) is not affected by temperature at 403–503 K, the mean pore diameter and the grain size augment with increasing temperature. The diagram presented makes it possible to conveniently predict the conditions to attain near-complete conversion of the bicarbonate and minimize undesirable sintering of the nascent carbonate.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.iecr.8b06151</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9189-1344</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 2019-02, Vol.58 (8), p.2868-2881
issn 0888-5885
1520-5045
language eng
recordid cdi_crossref_primary_10_1021_acs_iecr_8b06151
source American Chemical Society Journals
title Decomposition of Potassium Hydrogen Carbonate: Thermochemistry, Kinetics, and Textural Changes in Solids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A44%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decomposition%20of%20Potassium%20Hydrogen%20Carbonate:%20Thermochemistry,%20Kinetics,%20and%20Textural%20Changes%20in%20Solids&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Hartman,%20Miloslav&rft.date=2019-02-27&rft.volume=58&rft.issue=8&rft.spage=2868&rft.epage=2881&rft.pages=2868-2881&rft.issn=0888-5885&rft.eissn=1520-5045&rft_id=info:doi/10.1021/acs.iecr.8b06151&rft_dat=%3Cacs_cross%3Ec266838259%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true