Higher Alcohols Synthesis: Experimental and Process Parameters Study over a CNH-Supported KCoRhMo Catalyst
The present work investigated the effects of operating conditions (temperature (T), pressure (P), and gas hourly space velocity (GHSV)) on the higher-alcohols synthesis reaction, using a downward-flow fixed-bed reactor. The carbon nanohorn (CNH)-supported KCoRhMo catalysts with compositions of 9% K,...
Gespeichert in:
Veröffentlicht in: | Industrial & engineering chemistry research 2017-11, Vol.56 (46), p.13552-13565 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13565 |
---|---|
container_issue | 46 |
container_start_page | 13552 |
container_title | Industrial & engineering chemistry research |
container_volume | 56 |
creator | Boahene, Philip E Dalai, Ajay K |
description | The present work investigated the effects of operating conditions (temperature (T), pressure (P), and gas hourly space velocity (GHSV)) on the higher-alcohols synthesis reaction, using a downward-flow fixed-bed reactor. The carbon nanohorn (CNH)-supported KCoRhMo catalysts with compositions of 9% K, 4.5% Co, 1.5% Rh, and 15 wt % Mo were used for this study. The Design Expert software was used to analyze the interaction effects of T (290–370 °C), P (800–1400 psig), and GHSV (2.4–4.8 m3(STP)/kgcat/h) on CO conversion, alcohols, and hydrocarbon product selectivities, as well as their respective yields. The validity of the models was assessed by statistical tests: test of significance and coefficient of determination (R 2) values. The recorded R 2 values suggested that the quadratic models generated could sufficiently depict the experimental data. Increasing temperature and pressure in the ranges of 290–350 °C and 800–1400 psig, respectively, resulted in corresponding increases in CO conversions; however, with increasing GHSV, the CO conversion decreased monotonically. Numerical optimization assessments of the models selected the optimum operating conditions to be 325 °C, 1320 psig, and 2.4 m3(STP)/kgcat/h to give the maximum ethanol and higher alcohols space time yields of 0.126 and 0.177 g/gcat/h, respectively. |
doi_str_mv | 10.1021/acs.iecr.7b02146 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_iecr_7b02146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c432279212</sourcerecordid><originalsourceid>FETCH-LOGICAL-a317t-123cf60c8ce7c30d5a1334b9d8aa2c110b21f7d8862c7331b94c6e93ec551c973</originalsourceid><addsrcrecordid>eNp1kMFOwzAQRC0EEqVw5-gPIMWO48ThVkWFIgpUFM6Rs9mQVGkc2Skif4-r9spptdqZ0c4j5JazGWchv9fgZg2CnSWFX6P4jEy4DFkgWSTPyYQppQKplLwkV85tGWNSRtGEbJfNd42WzlswtWkd3YzdUKNr3ANd_PZomx12g26p7kq6tgbQObrWVu9wQOvlw74cqfnxEZpmb8tgs-97Ywcs6UtmPupXQzPt_aMbrslFpVuHN6c5JV-Pi89sGazen56z-SrQgidDwEMBVcxAASYgWCk1FyIq0lJpHQLnrAh5lZRKxSEkQvAijSDGVCBIySFNxJSwYy5Y45zFKu99C23HnLP8wCr3rPIDq_zEylvujpbDZWv2tvMP_i__A8eBblo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Higher Alcohols Synthesis: Experimental and Process Parameters Study over a CNH-Supported KCoRhMo Catalyst</title><source>American Chemical Society Journals</source><creator>Boahene, Philip E ; Dalai, Ajay K</creator><creatorcontrib>Boahene, Philip E ; Dalai, Ajay K</creatorcontrib><description>The present work investigated the effects of operating conditions (temperature (T), pressure (P), and gas hourly space velocity (GHSV)) on the higher-alcohols synthesis reaction, using a downward-flow fixed-bed reactor. The carbon nanohorn (CNH)-supported KCoRhMo catalysts with compositions of 9% K, 4.5% Co, 1.5% Rh, and 15 wt % Mo were used for this study. The Design Expert software was used to analyze the interaction effects of T (290–370 °C), P (800–1400 psig), and GHSV (2.4–4.8 m3(STP)/kgcat/h) on CO conversion, alcohols, and hydrocarbon product selectivities, as well as their respective yields. The validity of the models was assessed by statistical tests: test of significance and coefficient of determination (R 2) values. The recorded R 2 values suggested that the quadratic models generated could sufficiently depict the experimental data. Increasing temperature and pressure in the ranges of 290–350 °C and 800–1400 psig, respectively, resulted in corresponding increases in CO conversions; however, with increasing GHSV, the CO conversion decreased monotonically. Numerical optimization assessments of the models selected the optimum operating conditions to be 325 °C, 1320 psig, and 2.4 m3(STP)/kgcat/h to give the maximum ethanol and higher alcohols space time yields of 0.126 and 0.177 g/gcat/h, respectively.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/acs.iecr.7b02146</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Industrial & engineering chemistry research, 2017-11, Vol.56 (46), p.13552-13565</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a317t-123cf60c8ce7c30d5a1334b9d8aa2c110b21f7d8862c7331b94c6e93ec551c973</citedby><cites>FETCH-LOGICAL-a317t-123cf60c8ce7c30d5a1334b9d8aa2c110b21f7d8862c7331b94c6e93ec551c973</cites><orcidid>0000-0002-3083-2217</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.iecr.7b02146$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.iecr.7b02146$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Boahene, Philip E</creatorcontrib><creatorcontrib>Dalai, Ajay K</creatorcontrib><title>Higher Alcohols Synthesis: Experimental and Process Parameters Study over a CNH-Supported KCoRhMo Catalyst</title><title>Industrial & engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>The present work investigated the effects of operating conditions (temperature (T), pressure (P), and gas hourly space velocity (GHSV)) on the higher-alcohols synthesis reaction, using a downward-flow fixed-bed reactor. The carbon nanohorn (CNH)-supported KCoRhMo catalysts with compositions of 9% K, 4.5% Co, 1.5% Rh, and 15 wt % Mo were used for this study. The Design Expert software was used to analyze the interaction effects of T (290–370 °C), P (800–1400 psig), and GHSV (2.4–4.8 m3(STP)/kgcat/h) on CO conversion, alcohols, and hydrocarbon product selectivities, as well as their respective yields. The validity of the models was assessed by statistical tests: test of significance and coefficient of determination (R 2) values. The recorded R 2 values suggested that the quadratic models generated could sufficiently depict the experimental data. Increasing temperature and pressure in the ranges of 290–350 °C and 800–1400 psig, respectively, resulted in corresponding increases in CO conversions; however, with increasing GHSV, the CO conversion decreased monotonically. Numerical optimization assessments of the models selected the optimum operating conditions to be 325 °C, 1320 psig, and 2.4 m3(STP)/kgcat/h to give the maximum ethanol and higher alcohols space time yields of 0.126 and 0.177 g/gcat/h, respectively.</description><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kMFOwzAQRC0EEqVw5-gPIMWO48ThVkWFIgpUFM6Rs9mQVGkc2Skif4-r9spptdqZ0c4j5JazGWchv9fgZg2CnSWFX6P4jEy4DFkgWSTPyYQppQKplLwkV85tGWNSRtGEbJfNd42WzlswtWkd3YzdUKNr3ANd_PZomx12g26p7kq6tgbQObrWVu9wQOvlw74cqfnxEZpmb8tgs-97Ywcs6UtmPupXQzPt_aMbrslFpVuHN6c5JV-Pi89sGazen56z-SrQgidDwEMBVcxAASYgWCk1FyIq0lJpHQLnrAh5lZRKxSEkQvAijSDGVCBIySFNxJSwYy5Y45zFKu99C23HnLP8wCr3rPIDq_zEylvujpbDZWv2tvMP_i__A8eBblo</recordid><startdate>20171122</startdate><enddate>20171122</enddate><creator>Boahene, Philip E</creator><creator>Dalai, Ajay K</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3083-2217</orcidid></search><sort><creationdate>20171122</creationdate><title>Higher Alcohols Synthesis: Experimental and Process Parameters Study over a CNH-Supported KCoRhMo Catalyst</title><author>Boahene, Philip E ; Dalai, Ajay K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a317t-123cf60c8ce7c30d5a1334b9d8aa2c110b21f7d8862c7331b94c6e93ec551c973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boahene, Philip E</creatorcontrib><creatorcontrib>Dalai, Ajay K</creatorcontrib><collection>CrossRef</collection><jtitle>Industrial & engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boahene, Philip E</au><au>Dalai, Ajay K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Higher Alcohols Synthesis: Experimental and Process Parameters Study over a CNH-Supported KCoRhMo Catalyst</atitle><jtitle>Industrial & engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2017-11-22</date><risdate>2017</risdate><volume>56</volume><issue>46</issue><spage>13552</spage><epage>13565</epage><pages>13552-13565</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><abstract>The present work investigated the effects of operating conditions (temperature (T), pressure (P), and gas hourly space velocity (GHSV)) on the higher-alcohols synthesis reaction, using a downward-flow fixed-bed reactor. The carbon nanohorn (CNH)-supported KCoRhMo catalysts with compositions of 9% K, 4.5% Co, 1.5% Rh, and 15 wt % Mo were used for this study. The Design Expert software was used to analyze the interaction effects of T (290–370 °C), P (800–1400 psig), and GHSV (2.4–4.8 m3(STP)/kgcat/h) on CO conversion, alcohols, and hydrocarbon product selectivities, as well as their respective yields. The validity of the models was assessed by statistical tests: test of significance and coefficient of determination (R 2) values. The recorded R 2 values suggested that the quadratic models generated could sufficiently depict the experimental data. Increasing temperature and pressure in the ranges of 290–350 °C and 800–1400 psig, respectively, resulted in corresponding increases in CO conversions; however, with increasing GHSV, the CO conversion decreased monotonically. Numerical optimization assessments of the models selected the optimum operating conditions to be 325 °C, 1320 psig, and 2.4 m3(STP)/kgcat/h to give the maximum ethanol and higher alcohols space time yields of 0.126 and 0.177 g/gcat/h, respectively.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.iecr.7b02146</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3083-2217</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-5885 |
ispartof | Industrial & engineering chemistry research, 2017-11, Vol.56 (46), p.13552-13565 |
issn | 0888-5885 1520-5045 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acs_iecr_7b02146 |
source | American Chemical Society Journals |
title | Higher Alcohols Synthesis: Experimental and Process Parameters Study over a CNH-Supported KCoRhMo Catalyst |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A43%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Higher%20Alcohols%20Synthesis:%20Experimental%20and%20Process%20Parameters%20Study%20over%20a%20CNH-Supported%20KCoRhMo%20Catalyst&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Boahene,%20Philip%20E&rft.date=2017-11-22&rft.volume=56&rft.issue=46&rft.spage=13552&rft.epage=13565&rft.pages=13552-13565&rft.issn=0888-5885&rft.eissn=1520-5045&rft_id=info:doi/10.1021/acs.iecr.7b02146&rft_dat=%3Cacs_cross%3Ec432279212%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |