Detailed Kinetic Modeling of Lignin Pyrolysis for Process Optimization

Biomass valorization through thermochemical conversion of lignocellulosic feedstocks is limited by our lack of detailed kinetic models. In addition to adding mechanistic understanding, more detailed models are needed to optimize industrial biomass pyrolysis processes for producing fuels and chemical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2016-08, Vol.55 (34), p.9147-9153
Hauptverfasser: Hough, Blake R, Schwartz, Daniel T, Pfaendtner, Jim
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9153
container_issue 34
container_start_page 9147
container_title Industrial & engineering chemistry research
container_volume 55
creator Hough, Blake R
Schwartz, Daniel T
Pfaendtner, Jim
description Biomass valorization through thermochemical conversion of lignocellulosic feedstocks is limited by our lack of detailed kinetic models. In addition to adding mechanistic understanding, more detailed models are needed to optimize industrial biomass pyrolysis processes for producing fuels and chemicals. To this end, a kinetic model for lignin pyrolysis involving ∼100 species and 400 reactions is presented which is capable of predicting the temporal evolution of molecules and functional groups during lignin pyrolysis. The model provides information beyond the lumped yields of common pyrolysis models without any fitting, allowing it to cover a wider range of feedstocks and reaction conditions. Good agreement is observed with slow pyrolysis experiments, and an exhaustive global sensitivity analysis using over 2 million simulations sheds light on reactions that contribute most to the variance in model predictions. Model predictions for fast pyrolysis are available, but data from kinetically controlled experiments has yet to be generated for lignin fast pyrolysis.
doi_str_mv 10.1021/acs.iecr.6b02092
format Article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_iecr_6b02092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>i09310484</sourcerecordid><originalsourceid>FETCH-LOGICAL-a383t-6343c97e530455b2ca8c7561e465f15ccf394cba608921e359c6e3329771addc3</originalsourceid><addsrcrecordid>eNp1kL1OwzAUhS0EEqWwM_oBSLm2cxNnRIUCIqgdYI6cG6dylcaVHYby9CRqV6YznB8dfYzdC1gIkOLRUFw4S2GR1SChkBdsJlBCgpDiJZuB1jpBrfGa3cS4AwDENJ2x1bMdjOtswz9cbwdH_NM3tnP9lvuWl27bu55vjsF3x-gib33gm-DJxsjXh8Ht3a8ZnO9v2VVrumjvzjpn36uXr-VbUq5f35dPZWKUVkOSqVRRkVtU4yusJRlNOWbCphm2AolaVaRUmwx0IYVVWFBmlZJFngvTNKTmDE67FHyMwbbVIbi9CcdKQDVxqEYO1cShOnMYKw-nyuTs_E_ox4P_x_8ABLphYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Detailed Kinetic Modeling of Lignin Pyrolysis for Process Optimization</title><source>American Chemical Society Journals</source><creator>Hough, Blake R ; Schwartz, Daniel T ; Pfaendtner, Jim</creator><creatorcontrib>Hough, Blake R ; Schwartz, Daniel T ; Pfaendtner, Jim</creatorcontrib><description>Biomass valorization through thermochemical conversion of lignocellulosic feedstocks is limited by our lack of detailed kinetic models. In addition to adding mechanistic understanding, more detailed models are needed to optimize industrial biomass pyrolysis processes for producing fuels and chemicals. To this end, a kinetic model for lignin pyrolysis involving ∼100 species and 400 reactions is presented which is capable of predicting the temporal evolution of molecules and functional groups during lignin pyrolysis. The model provides information beyond the lumped yields of common pyrolysis models without any fitting, allowing it to cover a wider range of feedstocks and reaction conditions. Good agreement is observed with slow pyrolysis experiments, and an exhaustive global sensitivity analysis using over 2 million simulations sheds light on reactions that contribute most to the variance in model predictions. Model predictions for fast pyrolysis are available, but data from kinetically controlled experiments has yet to be generated for lignin fast pyrolysis.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/acs.iecr.6b02092</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Industrial &amp; engineering chemistry research, 2016-08, Vol.55 (34), p.9147-9153</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a383t-6343c97e530455b2ca8c7561e465f15ccf394cba608921e359c6e3329771addc3</citedby><cites>FETCH-LOGICAL-a383t-6343c97e530455b2ca8c7561e465f15ccf394cba608921e359c6e3329771addc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.iecr.6b02092$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.iecr.6b02092$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Hough, Blake R</creatorcontrib><creatorcontrib>Schwartz, Daniel T</creatorcontrib><creatorcontrib>Pfaendtner, Jim</creatorcontrib><title>Detailed Kinetic Modeling of Lignin Pyrolysis for Process Optimization</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>Biomass valorization through thermochemical conversion of lignocellulosic feedstocks is limited by our lack of detailed kinetic models. In addition to adding mechanistic understanding, more detailed models are needed to optimize industrial biomass pyrolysis processes for producing fuels and chemicals. To this end, a kinetic model for lignin pyrolysis involving ∼100 species and 400 reactions is presented which is capable of predicting the temporal evolution of molecules and functional groups during lignin pyrolysis. The model provides information beyond the lumped yields of common pyrolysis models without any fitting, allowing it to cover a wider range of feedstocks and reaction conditions. Good agreement is observed with slow pyrolysis experiments, and an exhaustive global sensitivity analysis using over 2 million simulations sheds light on reactions that contribute most to the variance in model predictions. Model predictions for fast pyrolysis are available, but data from kinetically controlled experiments has yet to be generated for lignin fast pyrolysis.</description><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OwzAUhS0EEqWwM_oBSLm2cxNnRIUCIqgdYI6cG6dylcaVHYby9CRqV6YznB8dfYzdC1gIkOLRUFw4S2GR1SChkBdsJlBCgpDiJZuB1jpBrfGa3cS4AwDENJ2x1bMdjOtswz9cbwdH_NM3tnP9lvuWl27bu55vjsF3x-gib33gm-DJxsjXh8Ht3a8ZnO9v2VVrumjvzjpn36uXr-VbUq5f35dPZWKUVkOSqVRRkVtU4yusJRlNOWbCphm2AolaVaRUmwx0IYVVWFBmlZJFngvTNKTmDE67FHyMwbbVIbi9CcdKQDVxqEYO1cShOnMYKw-nyuTs_E_ox4P_x_8ABLphYw</recordid><startdate>20160831</startdate><enddate>20160831</enddate><creator>Hough, Blake R</creator><creator>Schwartz, Daniel T</creator><creator>Pfaendtner, Jim</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160831</creationdate><title>Detailed Kinetic Modeling of Lignin Pyrolysis for Process Optimization</title><author>Hough, Blake R ; Schwartz, Daniel T ; Pfaendtner, Jim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a383t-6343c97e530455b2ca8c7561e465f15ccf394cba608921e359c6e3329771addc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hough, Blake R</creatorcontrib><creatorcontrib>Schwartz, Daniel T</creatorcontrib><creatorcontrib>Pfaendtner, Jim</creatorcontrib><collection>CrossRef</collection><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hough, Blake R</au><au>Schwartz, Daniel T</au><au>Pfaendtner, Jim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detailed Kinetic Modeling of Lignin Pyrolysis for Process Optimization</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2016-08-31</date><risdate>2016</risdate><volume>55</volume><issue>34</issue><spage>9147</spage><epage>9153</epage><pages>9147-9153</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><abstract>Biomass valorization through thermochemical conversion of lignocellulosic feedstocks is limited by our lack of detailed kinetic models. In addition to adding mechanistic understanding, more detailed models are needed to optimize industrial biomass pyrolysis processes for producing fuels and chemicals. To this end, a kinetic model for lignin pyrolysis involving ∼100 species and 400 reactions is presented which is capable of predicting the temporal evolution of molecules and functional groups during lignin pyrolysis. The model provides information beyond the lumped yields of common pyrolysis models without any fitting, allowing it to cover a wider range of feedstocks and reaction conditions. Good agreement is observed with slow pyrolysis experiments, and an exhaustive global sensitivity analysis using over 2 million simulations sheds light on reactions that contribute most to the variance in model predictions. Model predictions for fast pyrolysis are available, but data from kinetically controlled experiments has yet to be generated for lignin fast pyrolysis.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.iecr.6b02092</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 2016-08, Vol.55 (34), p.9147-9153
issn 0888-5885
1520-5045
language eng
recordid cdi_crossref_primary_10_1021_acs_iecr_6b02092
source American Chemical Society Journals
title Detailed Kinetic Modeling of Lignin Pyrolysis for Process Optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T01%3A43%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detailed%20Kinetic%20Modeling%20of%20Lignin%20Pyrolysis%20for%20Process%20Optimization&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Hough,%20Blake%20R&rft.date=2016-08-31&rft.volume=55&rft.issue=34&rft.spage=9147&rft.epage=9153&rft.pages=9147-9153&rft.issn=0888-5885&rft.eissn=1520-5045&rft_id=info:doi/10.1021/acs.iecr.6b02092&rft_dat=%3Cacs_cross%3Ei09310484%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true