Detailed Kinetic Modeling of Lignin Pyrolysis for Process Optimization
Biomass valorization through thermochemical conversion of lignocellulosic feedstocks is limited by our lack of detailed kinetic models. In addition to adding mechanistic understanding, more detailed models are needed to optimize industrial biomass pyrolysis processes for producing fuels and chemical...
Gespeichert in:
Veröffentlicht in: | Industrial & engineering chemistry research 2016-08, Vol.55 (34), p.9147-9153 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9153 |
---|---|
container_issue | 34 |
container_start_page | 9147 |
container_title | Industrial & engineering chemistry research |
container_volume | 55 |
creator | Hough, Blake R Schwartz, Daniel T Pfaendtner, Jim |
description | Biomass valorization through thermochemical conversion of lignocellulosic feedstocks is limited by our lack of detailed kinetic models. In addition to adding mechanistic understanding, more detailed models are needed to optimize industrial biomass pyrolysis processes for producing fuels and chemicals. To this end, a kinetic model for lignin pyrolysis involving ∼100 species and 400 reactions is presented which is capable of predicting the temporal evolution of molecules and functional groups during lignin pyrolysis. The model provides information beyond the lumped yields of common pyrolysis models without any fitting, allowing it to cover a wider range of feedstocks and reaction conditions. Good agreement is observed with slow pyrolysis experiments, and an exhaustive global sensitivity analysis using over 2 million simulations sheds light on reactions that contribute most to the variance in model predictions. Model predictions for fast pyrolysis are available, but data from kinetically controlled experiments has yet to be generated for lignin fast pyrolysis. |
doi_str_mv | 10.1021/acs.iecr.6b02092 |
format | Article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_iecr_6b02092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>i09310484</sourcerecordid><originalsourceid>FETCH-LOGICAL-a383t-6343c97e530455b2ca8c7561e465f15ccf394cba608921e359c6e3329771addc3</originalsourceid><addsrcrecordid>eNp1kL1OwzAUhS0EEqWwM_oBSLm2cxNnRIUCIqgdYI6cG6dylcaVHYby9CRqV6YznB8dfYzdC1gIkOLRUFw4S2GR1SChkBdsJlBCgpDiJZuB1jpBrfGa3cS4AwDENJ2x1bMdjOtswz9cbwdH_NM3tnP9lvuWl27bu55vjsF3x-gib33gm-DJxsjXh8Ht3a8ZnO9v2VVrumjvzjpn36uXr-VbUq5f35dPZWKUVkOSqVRRkVtU4yusJRlNOWbCphm2AolaVaRUmwx0IYVVWFBmlZJFngvTNKTmDE67FHyMwbbVIbi9CcdKQDVxqEYO1cShOnMYKw-nyuTs_E_ox4P_x_8ABLphYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Detailed Kinetic Modeling of Lignin Pyrolysis for Process Optimization</title><source>American Chemical Society Journals</source><creator>Hough, Blake R ; Schwartz, Daniel T ; Pfaendtner, Jim</creator><creatorcontrib>Hough, Blake R ; Schwartz, Daniel T ; Pfaendtner, Jim</creatorcontrib><description>Biomass valorization through thermochemical conversion of lignocellulosic feedstocks is limited by our lack of detailed kinetic models. In addition to adding mechanistic understanding, more detailed models are needed to optimize industrial biomass pyrolysis processes for producing fuels and chemicals. To this end, a kinetic model for lignin pyrolysis involving ∼100 species and 400 reactions is presented which is capable of predicting the temporal evolution of molecules and functional groups during lignin pyrolysis. The model provides information beyond the lumped yields of common pyrolysis models without any fitting, allowing it to cover a wider range of feedstocks and reaction conditions. Good agreement is observed with slow pyrolysis experiments, and an exhaustive global sensitivity analysis using over 2 million simulations sheds light on reactions that contribute most to the variance in model predictions. Model predictions for fast pyrolysis are available, but data from kinetically controlled experiments has yet to be generated for lignin fast pyrolysis.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/acs.iecr.6b02092</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Industrial & engineering chemistry research, 2016-08, Vol.55 (34), p.9147-9153</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a383t-6343c97e530455b2ca8c7561e465f15ccf394cba608921e359c6e3329771addc3</citedby><cites>FETCH-LOGICAL-a383t-6343c97e530455b2ca8c7561e465f15ccf394cba608921e359c6e3329771addc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.iecr.6b02092$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.iecr.6b02092$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Hough, Blake R</creatorcontrib><creatorcontrib>Schwartz, Daniel T</creatorcontrib><creatorcontrib>Pfaendtner, Jim</creatorcontrib><title>Detailed Kinetic Modeling of Lignin Pyrolysis for Process Optimization</title><title>Industrial & engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>Biomass valorization through thermochemical conversion of lignocellulosic feedstocks is limited by our lack of detailed kinetic models. In addition to adding mechanistic understanding, more detailed models are needed to optimize industrial biomass pyrolysis processes for producing fuels and chemicals. To this end, a kinetic model for lignin pyrolysis involving ∼100 species and 400 reactions is presented which is capable of predicting the temporal evolution of molecules and functional groups during lignin pyrolysis. The model provides information beyond the lumped yields of common pyrolysis models without any fitting, allowing it to cover a wider range of feedstocks and reaction conditions. Good agreement is observed with slow pyrolysis experiments, and an exhaustive global sensitivity analysis using over 2 million simulations sheds light on reactions that contribute most to the variance in model predictions. Model predictions for fast pyrolysis are available, but data from kinetically controlled experiments has yet to be generated for lignin fast pyrolysis.</description><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OwzAUhS0EEqWwM_oBSLm2cxNnRIUCIqgdYI6cG6dylcaVHYby9CRqV6YznB8dfYzdC1gIkOLRUFw4S2GR1SChkBdsJlBCgpDiJZuB1jpBrfGa3cS4AwDENJ2x1bMdjOtswz9cbwdH_NM3tnP9lvuWl27bu55vjsF3x-gib33gm-DJxsjXh8Ht3a8ZnO9v2VVrumjvzjpn36uXr-VbUq5f35dPZWKUVkOSqVRRkVtU4yusJRlNOWbCphm2AolaVaRUmwx0IYVVWFBmlZJFngvTNKTmDE67FHyMwbbVIbi9CcdKQDVxqEYO1cShOnMYKw-nyuTs_E_ox4P_x_8ABLphYw</recordid><startdate>20160831</startdate><enddate>20160831</enddate><creator>Hough, Blake R</creator><creator>Schwartz, Daniel T</creator><creator>Pfaendtner, Jim</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160831</creationdate><title>Detailed Kinetic Modeling of Lignin Pyrolysis for Process Optimization</title><author>Hough, Blake R ; Schwartz, Daniel T ; Pfaendtner, Jim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a383t-6343c97e530455b2ca8c7561e465f15ccf394cba608921e359c6e3329771addc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hough, Blake R</creatorcontrib><creatorcontrib>Schwartz, Daniel T</creatorcontrib><creatorcontrib>Pfaendtner, Jim</creatorcontrib><collection>CrossRef</collection><jtitle>Industrial & engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hough, Blake R</au><au>Schwartz, Daniel T</au><au>Pfaendtner, Jim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detailed Kinetic Modeling of Lignin Pyrolysis for Process Optimization</atitle><jtitle>Industrial & engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2016-08-31</date><risdate>2016</risdate><volume>55</volume><issue>34</issue><spage>9147</spage><epage>9153</epage><pages>9147-9153</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><abstract>Biomass valorization through thermochemical conversion of lignocellulosic feedstocks is limited by our lack of detailed kinetic models. In addition to adding mechanistic understanding, more detailed models are needed to optimize industrial biomass pyrolysis processes for producing fuels and chemicals. To this end, a kinetic model for lignin pyrolysis involving ∼100 species and 400 reactions is presented which is capable of predicting the temporal evolution of molecules and functional groups during lignin pyrolysis. The model provides information beyond the lumped yields of common pyrolysis models without any fitting, allowing it to cover a wider range of feedstocks and reaction conditions. Good agreement is observed with slow pyrolysis experiments, and an exhaustive global sensitivity analysis using over 2 million simulations sheds light on reactions that contribute most to the variance in model predictions. Model predictions for fast pyrolysis are available, but data from kinetically controlled experiments has yet to be generated for lignin fast pyrolysis.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.iecr.6b02092</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-5885 |
ispartof | Industrial & engineering chemistry research, 2016-08, Vol.55 (34), p.9147-9153 |
issn | 0888-5885 1520-5045 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acs_iecr_6b02092 |
source | American Chemical Society Journals |
title | Detailed Kinetic Modeling of Lignin Pyrolysis for Process Optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T01%3A43%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detailed%20Kinetic%20Modeling%20of%20Lignin%20Pyrolysis%20for%20Process%20Optimization&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Hough,%20Blake%20R&rft.date=2016-08-31&rft.volume=55&rft.issue=34&rft.spage=9147&rft.epage=9153&rft.pages=9147-9153&rft.issn=0888-5885&rft.eissn=1520-5045&rft_id=info:doi/10.1021/acs.iecr.6b02092&rft_dat=%3Cacs_cross%3Ei09310484%3C/acs_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |