Systematic Estimation of Noise Statistics for Nonlinear State Estimators by Parametric Uncertainty

An easy-to-implement noise estimation method for tuning state estimators is proposed. It outperforms benchmark methods in terms of accuracy or computational cost both in theory and in a case study. We assume parametric uncertainty in the process model, which we transform into noise statistics using...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2024-06, Vol.63 (22), p.9887-9903
Hauptverfasser: Krog, Halvor Aarnes, Jäschke, Johannes
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9903
container_issue 22
container_start_page 9887
container_title Industrial & engineering chemistry research
container_volume 63
creator Krog, Halvor Aarnes
Jäschke, Johannes
description An easy-to-implement noise estimation method for tuning state estimators is proposed. It outperforms benchmark methods in terms of accuracy or computational cost both in theory and in a case study. We assume parametric uncertainty in the process model, which we transform into noise statistics using the generalized unscented transformation (GenUT). While most other methods estimate only the noise covariance, we also estimate the mean. Our tuning method is suitable for input–output models, demonstrated through a case study involving process simulators and industrial data. We present a theoretical analysis of our method, which is based on splitting one large GenUT into two smaller GenUTs. This results in two theorems: (i) mean approximations for the two systems are equal and (ii) covariance approximations are similar under certain mild conditions. These theorems confirm the validity of our method, and we discuss their potential to realize a numerically stable GenUT for high-dimensional systems.
doi_str_mv 10.1021/acs.iecr.3c04511
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_iecr_3c04511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153624135</sourcerecordid><originalsourceid>FETCH-LOGICAL-a308t-5af2d7b056bcd727cb105b6af2f45e1523ac93cd8150a9e67a7e961095a9d4133</originalsourceid><addsrcrecordid>eNp1UMtOwzAQtBBIlMedY44cSFnH2TyOqCoPqQKk0rPlOBvJVRoX2z3k73FoOXLa3dmZkWYYu-Mw55DxR6X93JB2c6EhR87P2IxjBinG65zNoKqqFKsKL9mV91sAQMzzGWvWow-0U8HoZOmDmTY7JLZL3q3xlKxDBCKufdJZF8GhNwMp9_ugP4l1PmnG5FM5taPgotdm0OSCMkMYb9hFp3pPt6d5zTbPy6_Fa7r6eHlbPK1SJaAKKaoua8sGsGh0W2albjhgU0S0y5FiFqF0LXRbcQRVU1GqkuqCQ42qbnMuxDW7P_runf0-kA9yZ7ymvlcD2YOXgqMossjESIUjVTvrvaNO7l3M4UbJQU51ylinnOqUpzqj5OEomT5be3BDzPI__QerT3p_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153624135</pqid></control><display><type>article</type><title>Systematic Estimation of Noise Statistics for Nonlinear State Estimators by Parametric Uncertainty</title><source>ACS Publications</source><creator>Krog, Halvor Aarnes ; Jäschke, Johannes</creator><creatorcontrib>Krog, Halvor Aarnes ; Jäschke, Johannes</creatorcontrib><description>An easy-to-implement noise estimation method for tuning state estimators is proposed. It outperforms benchmark methods in terms of accuracy or computational cost both in theory and in a case study. We assume parametric uncertainty in the process model, which we transform into noise statistics using the generalized unscented transformation (GenUT). While most other methods estimate only the noise covariance, we also estimate the mean. Our tuning method is suitable for input–output models, demonstrated through a case study involving process simulators and industrial data. We present a theoretical analysis of our method, which is based on splitting one large GenUT into two smaller GenUTs. This results in two theorems: (i) mean approximations for the two systems are equal and (ii) covariance approximations are similar under certain mild conditions. These theorems confirm the validity of our method, and we discuss their potential to realize a numerically stable GenUT for high-dimensional systems.</description><identifier>ISSN: 0888-5885</identifier><identifier>ISSN: 1520-5045</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/acs.iecr.3c04511</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>case studies ; chemistry ; covariance ; Process Systems Engineering ; uncertainty</subject><ispartof>Industrial &amp; engineering chemistry research, 2024-06, Vol.63 (22), p.9887-9903</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a308t-5af2d7b056bcd727cb105b6af2f45e1523ac93cd8150a9e67a7e961095a9d4133</cites><orcidid>0009-0007-0036-3206 ; 0000-0003-2021-4279</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.iecr.3c04511$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.iecr.3c04511$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids></links><search><creatorcontrib>Krog, Halvor Aarnes</creatorcontrib><creatorcontrib>Jäschke, Johannes</creatorcontrib><title>Systematic Estimation of Noise Statistics for Nonlinear State Estimators by Parametric Uncertainty</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>An easy-to-implement noise estimation method for tuning state estimators is proposed. It outperforms benchmark methods in terms of accuracy or computational cost both in theory and in a case study. We assume parametric uncertainty in the process model, which we transform into noise statistics using the generalized unscented transformation (GenUT). While most other methods estimate only the noise covariance, we also estimate the mean. Our tuning method is suitable for input–output models, demonstrated through a case study involving process simulators and industrial data. We present a theoretical analysis of our method, which is based on splitting one large GenUT into two smaller GenUTs. This results in two theorems: (i) mean approximations for the two systems are equal and (ii) covariance approximations are similar under certain mild conditions. These theorems confirm the validity of our method, and we discuss their potential to realize a numerically stable GenUT for high-dimensional systems.</description><subject>case studies</subject><subject>chemistry</subject><subject>covariance</subject><subject>Process Systems Engineering</subject><subject>uncertainty</subject><issn>0888-5885</issn><issn>1520-5045</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1UMtOwzAQtBBIlMedY44cSFnH2TyOqCoPqQKk0rPlOBvJVRoX2z3k73FoOXLa3dmZkWYYu-Mw55DxR6X93JB2c6EhR87P2IxjBinG65zNoKqqFKsKL9mV91sAQMzzGWvWow-0U8HoZOmDmTY7JLZL3q3xlKxDBCKufdJZF8GhNwMp9_ugP4l1PmnG5FM5taPgotdm0OSCMkMYb9hFp3pPt6d5zTbPy6_Fa7r6eHlbPK1SJaAKKaoua8sGsGh0W2albjhgU0S0y5FiFqF0LXRbcQRVU1GqkuqCQ42qbnMuxDW7P_runf0-kA9yZ7ymvlcD2YOXgqMossjESIUjVTvrvaNO7l3M4UbJQU51ylinnOqUpzqj5OEomT5be3BDzPI__QerT3p_</recordid><startdate>20240605</startdate><enddate>20240605</enddate><creator>Krog, Halvor Aarnes</creator><creator>Jäschke, Johannes</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0009-0007-0036-3206</orcidid><orcidid>https://orcid.org/0000-0003-2021-4279</orcidid></search><sort><creationdate>20240605</creationdate><title>Systematic Estimation of Noise Statistics for Nonlinear State Estimators by Parametric Uncertainty</title><author>Krog, Halvor Aarnes ; Jäschke, Johannes</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a308t-5af2d7b056bcd727cb105b6af2f45e1523ac93cd8150a9e67a7e961095a9d4133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>case studies</topic><topic>chemistry</topic><topic>covariance</topic><topic>Process Systems Engineering</topic><topic>uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krog, Halvor Aarnes</creatorcontrib><creatorcontrib>Jäschke, Johannes</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krog, Halvor Aarnes</au><au>Jäschke, Johannes</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Systematic Estimation of Noise Statistics for Nonlinear State Estimators by Parametric Uncertainty</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2024-06-05</date><risdate>2024</risdate><volume>63</volume><issue>22</issue><spage>9887</spage><epage>9903</epage><pages>9887-9903</pages><issn>0888-5885</issn><issn>1520-5045</issn><eissn>1520-5045</eissn><abstract>An easy-to-implement noise estimation method for tuning state estimators is proposed. It outperforms benchmark methods in terms of accuracy or computational cost both in theory and in a case study. We assume parametric uncertainty in the process model, which we transform into noise statistics using the generalized unscented transformation (GenUT). While most other methods estimate only the noise covariance, we also estimate the mean. Our tuning method is suitable for input–output models, demonstrated through a case study involving process simulators and industrial data. We present a theoretical analysis of our method, which is based on splitting one large GenUT into two smaller GenUTs. This results in two theorems: (i) mean approximations for the two systems are equal and (ii) covariance approximations are similar under certain mild conditions. These theorems confirm the validity of our method, and we discuss their potential to realize a numerically stable GenUT for high-dimensional systems.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.iecr.3c04511</doi><tpages>17</tpages><orcidid>https://orcid.org/0009-0007-0036-3206</orcidid><orcidid>https://orcid.org/0000-0003-2021-4279</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 2024-06, Vol.63 (22), p.9887-9903
issn 0888-5885
1520-5045
1520-5045
language eng
recordid cdi_crossref_primary_10_1021_acs_iecr_3c04511
source ACS Publications
subjects case studies
chemistry
covariance
Process Systems Engineering
uncertainty
title Systematic Estimation of Noise Statistics for Nonlinear State Estimators by Parametric Uncertainty
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T16%3A59%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Systematic%20Estimation%20of%20Noise%20Statistics%20for%20Nonlinear%20State%20Estimators%20by%20Parametric%20Uncertainty&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Krog,%20Halvor%20Aarnes&rft.date=2024-06-05&rft.volume=63&rft.issue=22&rft.spage=9887&rft.epage=9903&rft.pages=9887-9903&rft.issn=0888-5885&rft.eissn=1520-5045&rft_id=info:doi/10.1021/acs.iecr.3c04511&rft_dat=%3Cproquest_cross%3E3153624135%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3153624135&rft_id=info:pmid/&rfr_iscdi=true