Systematic Estimation of Noise Statistics for Nonlinear State Estimators by Parametric Uncertainty
An easy-to-implement noise estimation method for tuning state estimators is proposed. It outperforms benchmark methods in terms of accuracy or computational cost both in theory and in a case study. We assume parametric uncertainty in the process model, which we transform into noise statistics using...
Gespeichert in:
Veröffentlicht in: | Industrial & engineering chemistry research 2024-06, Vol.63 (22), p.9887-9903 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9903 |
---|---|
container_issue | 22 |
container_start_page | 9887 |
container_title | Industrial & engineering chemistry research |
container_volume | 63 |
creator | Krog, Halvor Aarnes Jäschke, Johannes |
description | An easy-to-implement noise estimation method for tuning state estimators is proposed. It outperforms benchmark methods in terms of accuracy or computational cost both in theory and in a case study. We assume parametric uncertainty in the process model, which we transform into noise statistics using the generalized unscented transformation (GenUT). While most other methods estimate only the noise covariance, we also estimate the mean. Our tuning method is suitable for input–output models, demonstrated through a case study involving process simulators and industrial data. We present a theoretical analysis of our method, which is based on splitting one large GenUT into two smaller GenUTs. This results in two theorems: (i) mean approximations for the two systems are equal and (ii) covariance approximations are similar under certain mild conditions. These theorems confirm the validity of our method, and we discuss their potential to realize a numerically stable GenUT for high-dimensional systems. |
doi_str_mv | 10.1021/acs.iecr.3c04511 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acs_iecr_3c04511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153624135</sourcerecordid><originalsourceid>FETCH-LOGICAL-a308t-5af2d7b056bcd727cb105b6af2f45e1523ac93cd8150a9e67a7e961095a9d4133</originalsourceid><addsrcrecordid>eNp1UMtOwzAQtBBIlMedY44cSFnH2TyOqCoPqQKk0rPlOBvJVRoX2z3k73FoOXLa3dmZkWYYu-Mw55DxR6X93JB2c6EhR87P2IxjBinG65zNoKqqFKsKL9mV91sAQMzzGWvWow-0U8HoZOmDmTY7JLZL3q3xlKxDBCKufdJZF8GhNwMp9_ugP4l1PmnG5FM5taPgotdm0OSCMkMYb9hFp3pPt6d5zTbPy6_Fa7r6eHlbPK1SJaAKKaoua8sGsGh0W2albjhgU0S0y5FiFqF0LXRbcQRVU1GqkuqCQ42qbnMuxDW7P_runf0-kA9yZ7ymvlcD2YOXgqMossjESIUjVTvrvaNO7l3M4UbJQU51ylinnOqUpzqj5OEomT5be3BDzPI__QerT3p_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153624135</pqid></control><display><type>article</type><title>Systematic Estimation of Noise Statistics for Nonlinear State Estimators by Parametric Uncertainty</title><source>ACS Publications</source><creator>Krog, Halvor Aarnes ; Jäschke, Johannes</creator><creatorcontrib>Krog, Halvor Aarnes ; Jäschke, Johannes</creatorcontrib><description>An easy-to-implement noise estimation method for tuning state estimators is proposed. It outperforms benchmark methods in terms of accuracy or computational cost both in theory and in a case study. We assume parametric uncertainty in the process model, which we transform into noise statistics using the generalized unscented transformation (GenUT). While most other methods estimate only the noise covariance, we also estimate the mean. Our tuning method is suitable for input–output models, demonstrated through a case study involving process simulators and industrial data. We present a theoretical analysis of our method, which is based on splitting one large GenUT into two smaller GenUTs. This results in two theorems: (i) mean approximations for the two systems are equal and (ii) covariance approximations are similar under certain mild conditions. These theorems confirm the validity of our method, and we discuss their potential to realize a numerically stable GenUT for high-dimensional systems.</description><identifier>ISSN: 0888-5885</identifier><identifier>ISSN: 1520-5045</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/acs.iecr.3c04511</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>case studies ; chemistry ; covariance ; Process Systems Engineering ; uncertainty</subject><ispartof>Industrial & engineering chemistry research, 2024-06, Vol.63 (22), p.9887-9903</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a308t-5af2d7b056bcd727cb105b6af2f45e1523ac93cd8150a9e67a7e961095a9d4133</cites><orcidid>0009-0007-0036-3206 ; 0000-0003-2021-4279</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.iecr.3c04511$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.iecr.3c04511$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids></links><search><creatorcontrib>Krog, Halvor Aarnes</creatorcontrib><creatorcontrib>Jäschke, Johannes</creatorcontrib><title>Systematic Estimation of Noise Statistics for Nonlinear State Estimators by Parametric Uncertainty</title><title>Industrial & engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>An easy-to-implement noise estimation method for tuning state estimators is proposed. It outperforms benchmark methods in terms of accuracy or computational cost both in theory and in a case study. We assume parametric uncertainty in the process model, which we transform into noise statistics using the generalized unscented transformation (GenUT). While most other methods estimate only the noise covariance, we also estimate the mean. Our tuning method is suitable for input–output models, demonstrated through a case study involving process simulators and industrial data. We present a theoretical analysis of our method, which is based on splitting one large GenUT into two smaller GenUTs. This results in two theorems: (i) mean approximations for the two systems are equal and (ii) covariance approximations are similar under certain mild conditions. These theorems confirm the validity of our method, and we discuss their potential to realize a numerically stable GenUT for high-dimensional systems.</description><subject>case studies</subject><subject>chemistry</subject><subject>covariance</subject><subject>Process Systems Engineering</subject><subject>uncertainty</subject><issn>0888-5885</issn><issn>1520-5045</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1UMtOwzAQtBBIlMedY44cSFnH2TyOqCoPqQKk0rPlOBvJVRoX2z3k73FoOXLa3dmZkWYYu-Mw55DxR6X93JB2c6EhR87P2IxjBinG65zNoKqqFKsKL9mV91sAQMzzGWvWow-0U8HoZOmDmTY7JLZL3q3xlKxDBCKufdJZF8GhNwMp9_ugP4l1PmnG5FM5taPgotdm0OSCMkMYb9hFp3pPt6d5zTbPy6_Fa7r6eHlbPK1SJaAKKaoua8sGsGh0W2albjhgU0S0y5FiFqF0LXRbcQRVU1GqkuqCQ42qbnMuxDW7P_runf0-kA9yZ7ymvlcD2YOXgqMossjESIUjVTvrvaNO7l3M4UbJQU51ylinnOqUpzqj5OEomT5be3BDzPI__QerT3p_</recordid><startdate>20240605</startdate><enddate>20240605</enddate><creator>Krog, Halvor Aarnes</creator><creator>Jäschke, Johannes</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0009-0007-0036-3206</orcidid><orcidid>https://orcid.org/0000-0003-2021-4279</orcidid></search><sort><creationdate>20240605</creationdate><title>Systematic Estimation of Noise Statistics for Nonlinear State Estimators by Parametric Uncertainty</title><author>Krog, Halvor Aarnes ; Jäschke, Johannes</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a308t-5af2d7b056bcd727cb105b6af2f45e1523ac93cd8150a9e67a7e961095a9d4133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>case studies</topic><topic>chemistry</topic><topic>covariance</topic><topic>Process Systems Engineering</topic><topic>uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krog, Halvor Aarnes</creatorcontrib><creatorcontrib>Jäschke, Johannes</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Industrial & engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krog, Halvor Aarnes</au><au>Jäschke, Johannes</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Systematic Estimation of Noise Statistics for Nonlinear State Estimators by Parametric Uncertainty</atitle><jtitle>Industrial & engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2024-06-05</date><risdate>2024</risdate><volume>63</volume><issue>22</issue><spage>9887</spage><epage>9903</epage><pages>9887-9903</pages><issn>0888-5885</issn><issn>1520-5045</issn><eissn>1520-5045</eissn><abstract>An easy-to-implement noise estimation method for tuning state estimators is proposed. It outperforms benchmark methods in terms of accuracy or computational cost both in theory and in a case study. We assume parametric uncertainty in the process model, which we transform into noise statistics using the generalized unscented transformation (GenUT). While most other methods estimate only the noise covariance, we also estimate the mean. Our tuning method is suitable for input–output models, demonstrated through a case study involving process simulators and industrial data. We present a theoretical analysis of our method, which is based on splitting one large GenUT into two smaller GenUTs. This results in two theorems: (i) mean approximations for the two systems are equal and (ii) covariance approximations are similar under certain mild conditions. These theorems confirm the validity of our method, and we discuss their potential to realize a numerically stable GenUT for high-dimensional systems.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.iecr.3c04511</doi><tpages>17</tpages><orcidid>https://orcid.org/0009-0007-0036-3206</orcidid><orcidid>https://orcid.org/0000-0003-2021-4279</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-5885 |
ispartof | Industrial & engineering chemistry research, 2024-06, Vol.63 (22), p.9887-9903 |
issn | 0888-5885 1520-5045 1520-5045 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acs_iecr_3c04511 |
source | ACS Publications |
subjects | case studies chemistry covariance Process Systems Engineering uncertainty |
title | Systematic Estimation of Noise Statistics for Nonlinear State Estimators by Parametric Uncertainty |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T16%3A59%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Systematic%20Estimation%20of%20Noise%20Statistics%20for%20Nonlinear%20State%20Estimators%20by%20Parametric%20Uncertainty&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Krog,%20Halvor%20Aarnes&rft.date=2024-06-05&rft.volume=63&rft.issue=22&rft.spage=9887&rft.epage=9903&rft.pages=9887-9903&rft.issn=0888-5885&rft.eissn=1520-5045&rft_id=info:doi/10.1021/acs.iecr.3c04511&rft_dat=%3Cproquest_cross%3E3153624135%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3153624135&rft_id=info:pmid/&rfr_iscdi=true |